KATA PENGANTAR

Diharapkan Laporan Akuntabilitas Kinerja Badan Litbang Pertanian Tahun 2015 ini dapat bermanfaat sebagai acuan dalam pengambilan kebijakan program dan umpan balik dalam memperbaiki dan meningkatkan kinerja Badan Litbang Pertanian selanjutnya.

Jakarta, Februari 2016

Kepala Badan,

Dr. Ir. Muhammad Syakir, MS
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>i</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>ii</td>
</tr>
<tr>
<td>IKHTISAR EKSEKUTIF</td>
<td>iii</td>
</tr>
<tr>
<td>BAB I. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>BAB II. PERENCANAAN DAN PERJANJIAN KINERJA</td>
<td>9</td>
</tr>
<tr>
<td>2.1. Visi</td>
<td>10</td>
</tr>
<tr>
<td>2.2. Misi</td>
<td>10</td>
</tr>
<tr>
<td>2.3. Tujuan</td>
<td>10</td>
</tr>
<tr>
<td>2.4. Sasaran</td>
<td>11</td>
</tr>
<tr>
<td>2.5. Arah Kebijakan</td>
<td>11</td>
</tr>
<tr>
<td>2.6. Program Balitbangtan</td>
<td>13</td>
</tr>
<tr>
<td>2.7. Kegiatan Balitbangtan</td>
<td>14</td>
</tr>
<tr>
<td>2.8. Indikator Kinerja Utama</td>
<td>19</td>
</tr>
<tr>
<td>2.9. Rencana Kinerja Tahun 2015</td>
<td>22</td>
</tr>
<tr>
<td>2.10. Perjanjian Kinerja Tahun 2015</td>
<td>26</td>
</tr>
<tr>
<td>BAB III. AKUNTABILITAS KINERJA</td>
<td>28</td>
</tr>
<tr>
<td>3.1. Pengukuran Capaian Kinerja Tahun 2015</td>
<td>28</td>
</tr>
<tr>
<td>3.2. Analisis Capaian Kinerja</td>
<td>31</td>
</tr>
<tr>
<td>3.3. Akuntabilitas Keuangan (Audited)</td>
<td>105</td>
</tr>
<tr>
<td>BAB IV. PENUTUP</td>
<td>111</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>112</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1</td>
<td>Perkembangan Komposisi SDM Balitbangtan Tahun 2012 – 2015 menurut Tingkat Pendidikan</td>
<td>3</td>
</tr>
<tr>
<td>Tabel 2</td>
<td>Perkembangan Komposisi Tenaga Fungsional Balitbangtan Tahun 2012 – 2015</td>
<td>4</td>
</tr>
<tr>
<td>Tabel 3</td>
<td>Laboratorium Pengujian Terakreditasi KAN</td>
<td>5</td>
</tr>
<tr>
<td>Tabel 4</td>
<td>Sasaran dan Indikator Kinerja Utama Balitbangtan 2015</td>
<td>23</td>
</tr>
<tr>
<td>Tabel 5</td>
<td>Rencana Kinerja Tahunan TA. 2015</td>
<td>25</td>
</tr>
<tr>
<td>Tabel 6</td>
<td>Perjanjian Kinerja Tahun TA. 2015</td>
<td>27</td>
</tr>
<tr>
<td>Tabel 7</td>
<td>Capaian Kinerja Indikator Sasaran RPJMN Badan Litbang Pertanian Tahun 2015</td>
<td>29</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Keragaan Varietas</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Inpari 38 Tadah Hujan Agritan Tahan Penyakit Blas Dengan Potensi Hasil 8,16 T/Ha GKG</td>
<td>33</td>
</tr>
<tr>
<td>2.</td>
<td>Inpari 39 Tadah Hujan Agritan dengan Potensi Hasil 8,45 T/Ha GKG</td>
<td>33</td>
</tr>
<tr>
<td>3.</td>
<td>Inpari 40 Tadah Hujan Agritan Potensi Hasil 7,83 T/Ha GKG</td>
<td>34</td>
</tr>
<tr>
<td>4.</td>
<td>Inpari 41 Tadah Hujan Agritan Potensi Hasil 6,01 T/Ha GKG</td>
<td>34</td>
</tr>
<tr>
<td>5.</td>
<td>Padi Gogo Inpago 11 Agritan, Peka Keracunan Al 60 ppm, Tahan Blas Ras 033</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>Kedelai Varietas Devon 1 Potensi Hasil 3,09 T/Ha, Tahan Karat Daun dan Kandungan Isoflavon Tinggi</td>
<td>35</td>
</tr>
<tr>
<td>7.</td>
<td>Kedelai Varietas Dega 1 Potensi Hasil 3,8 T/Ha, Genjah dan Biji Besar</td>
<td>36</td>
</tr>
<tr>
<td>8.</td>
<td>Kacang Tanah Varietas Hypoma 3 dengan Potensi Hasil 5,9 T/Ha, Tahan Penyakit Karat, Bercak Daun, dan Layu Bakteri</td>
<td>36</td>
</tr>
<tr>
<td>9.</td>
<td>Varietas Ubikayu Litbang UK 3 dengan Potensi Hasil 41,84 T/Ha</td>
<td>37</td>
</tr>
<tr>
<td>10.</td>
<td>Jagung Hibrida Varietas JH 27 dengan Potensi 12,6 T/Ha Tahan Bulai, Biji Semi Mutiara</td>
<td>37</td>
</tr>
<tr>
<td>11.</td>
<td>Jagung Hibrida Varietas JH 234 dengan Potensi 12,6 T/Ha Tahan Bulai</td>
<td>38</td>
</tr>
<tr>
<td>12.</td>
<td>Jagung Hibrida Varietas JH 45 URI dengan Potensi 12,6 T/Ha Tahan Bulai dan Rebah</td>
<td>39</td>
</tr>
<tr>
<td>13.</td>
<td>Varietas Gandum Guri 6 Agritan Umur 100 Hari Potensi Hasil 3,3 Ton/Ha</td>
<td>39</td>
</tr>
</tbody>
</table>
Gambar 14. Keragaan Sorgum Varietas Suri 5 Agritan dengan Potensi Hasil 5,7 T/Ha

Gambar 15. Penampilan Varietas Unggul Kopi LIM 1

Gambar 16. Penampilan Varietas Unggul Kopi LIM 2

Gambar 17. Bentuk Tajuk dan Batang Seraiwangi Sitrona 1 Agribun, Sitrona 2 Agribun, dan Seraiwangi 1

Gambar 18. Teknik pemberian Kapur (dolomit) 4 ton/ha ditambah NPK rekomendasi dengan pemberian pembenah tanah biochar dosis 5 ton/ha meningkatkan produksi biomas

Gambar 19. Kondisi sumberdaya air

Gambar 20. Rancang Bangun dan Instalasi Jaringan Irigasi

Gambar 21. Program Aplikasi Untuk Mendeteksi Struktur Keluaran Regresi Minitab

Gambar 23. Pemanfataan pompa air tenaga surya untuk irigasi di Desa Sriharjo, Kecamatan Imogiri, Kabupaten Bantul, Daerah Istimewa Yogyakarta

Gambar 24. Alat Pengukuran curah hujan

Gambar 25. Bagan alat pantau otomatis

Gambar 26. Alat AWS

Gambar 27. Desain pengukuran air DAS Pusur dan Pengambilan data

Gambar 28. Teknologi Remediasi POPs

Gambar 29. Teknologi Remediasi Logam Berat

Gambar 30. Pola Tanam Padi – Padi – Palawija

Gambar 31. Alat ukur hara tanah

Gambar 32. Prototipe Mesin Panen Padi *Mini Combine Harvester* untuk Lahan Rawa
Gambar 33. Tampilan website BB Mektan dan menu Layanan Informasi Alsir ... 65

Gambar 34. Peta sebaran dan jumlah traktor tangan dan power thresher 65

Gambar 35. Paket mesin budidaya dan pascapanen jagung yang terdiri dari mesin penanam, penyiang, pemipil dan pengering *tipe bad* ... 66

Gambar 36. Paket mesin budidaya dan pascapanen kedelai yang terdiri dari mesin penanam, mesin penyiang, perontok dan pengering ... 66

Gambar 37. Mold prototipe *plastic injection* papan bibit (*tray*) *Indo Jarwo Transplanter* ... 67

Gambar 38. Blanking dies pemegang dan penyetel pelampung IJT........... 67

Gambar 39. U-bending dies pemegang dan penyetel pelampung IJT........... 68

Gambar 40. Prototipe Mesin Panen Tebu Hasil Rekayasa 68

Gambar 41. *Bore Core Sampler* dan Spesifikasi Teknis Hasil Kegiatan 69

Gambar 42. Rekayasa dan Pengembangan Pompa Air Tenaga Surya untuk Budidaya Bawang Merah .. 70

Gambar 43. Penyiangan manual dengan alat kored .. 73

Gambar 44. Kegiatan uji resistensi koloni wereng hijau terhadap empat golongan bahan aktif pestisida dan kegiatan pengelolaan aplikasi pestisida dalam pengendalian tungro 74

Gambar 45. Teknologi Pengemasan dan Penyimpanan Entres Kopi Robusta ... 82

Gambar 47. Perkecambahan embrio somatik sekunder (A), dan Planlet dengan daun yang mirip kotiledon (B) 83

Gambar 48. Tanaman kakao hasil perbanyakan melalui embriogenesis somatic ... 84

Gambar 49. Alat pengepres minyak kopra putih.. 88
Gambar 50. Aktivitas produksi di “rumah jagung” dan produk yang dihasilkan (berasan dan tepung jagung)............................... 91
Gambar 51. Aktivitas produksi di “mini plan sagu” dan “rumah sagu” sebagai media promosi dan outlet pemasaran.................. 92
Gambar 52. Grafik Persentase Pagu Anggaran .. 105
Gambar 53. Perbandingan (Persentase) Realisasi terhadap Pagu Anggaran Badan Litbang Pertanian TA 2015 Per Belanja 106
Gambar 54. Perbandingan (Persentase) Realisasi terhadap Pagu Anggaran Badan Litbang Pertanian TA 2015 Per Eselon-2…… 107
DAFTAR LAMPIRAN

Lampiran 1. Gambar Struktur Organisasi Badan Litbang Pertanian
Lampiran 3. Rencana Kinerja Tahunan Balitbangtan 2015
Lampiran 4. Perjanjian Kinerja Balitbangtan 2015
Lampiran 5. Revisi Perjanjian Kinerja Balitbangtan 2015
IKHTISAR EKSEKUTIF

Sesuai dengan organisasi Balitbangtan, program Balitbangtan untuk periode 2015-2019
terdiri dari 12 kegiatan, yaitu sebagai berikut: (1) Kegiatan Litbang Tanaman Pangan; (2) Kegiatan Litbang Tanaman Hortikultura; (3) Kegiatan Litbang Tanaman Perkebunan; (4); Kegiatan Litbang Peternakan dan Veteriner; (5) Kegiatan Litbang Sumber Daya Lahan Pertanian; (6) Kegiatan Litbang Bioteknologi dan Sumber Daya Genetik Pertanian; (7) Kegiatan Penelitian Sosial Ekonomi dan Kebijakan Pertanian; (8) Kegiatan Perekayasaan/Penelitian dan Pengembangan Mekanisasi Pertanian; (9) Kegiatan Litbang Pascapanen Pertanian; (10) Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi Pertanian; (11) Kegiatan Pengkajian dan Percepatan Diseminasi Inovasi Pertanian; (12) Kegiatan Dukungan Manajemen, Fasilitas dan Instrumen Teknis dalam Pelaksanaan Kegiatan Litbang Pertanian.

Sementara itu, berdasarkan Penetapan Kinerja Balitbangtan Tahun 2015, Balitbangtan mempunyai 1 (satu) sasaran strategis dan 9 (sembilan) Indikator Kinerja yang digunakan sebagai parameter pengukuran realisasi capaian setiap sasaran, yaitu (1) Jumlah Varietas (Galur/Klon) Unggul Baru; (2) Jumlah teknologi dan inovasi peningkatan produksi pertanian; (3) Jumlah model sistem kelembagaan dan inovasi spesifik lokasi; (4) Jumlah Agro Science Park (ASP); (5) Jumlah Agro Techno Park (ATP); (6) Jumlah rekomendasi kebijakan pembangunan pertanian; (7) Jumlah benih sumber tanaman; (8) Jumlah bibit sumber ternak dan (9) Jumlah teknologi yang didiseminasikan ke pengguna. Target untuk 9 indikator sasaran tersebut, secara umum telah tercapai dan melebihi target yang ditetapkan dengan kisaran prosentase capaian antara 104.55% (sangat berhasil).

LAPORAN KINERJA
BADAN LITBANG PERTANIAN
2015

BADAN PENELITIAN DAN PENGEMBANGAN PERTANIAN
KEMENTERIAN PERTANIAN
2015
BAB I. PENDAHULUAN

Badan Penelitian dan Pengembangan Pertanian merupakan salah satu unit eselon I di Kementerian Pertanian. Berdasarkan Permentan No. 61/Permentan/OT.140/10/2010 tentang Organisasi dan Tata Kerja Kementerian Pertanian, Balitbangtan mempunyai tugas melaksanakan penelitian dan pengembangan pertanian. Untuk melaksanakan tugas tersebut, Balitbangtan menyelenggarakan berbagai fungsi, yaitu : (1) penyusunan kebijakan teknis, rencana dan program penelitian dan pengembangan pertanian, (2) pelaksanaan penelitian dan pengembangan pertanian, (3) pemantauan, evaluasi dan pelaporan pelaksanaan penelitian dan pengembangan pertanian, serta (4) pelaksanaan administrasi Balitbangtan.

Badan Penelitian dan Pengembangan Pertanian (Balitbangtan) merupakan leadin g institution dalam pengembangan pertanian di Indonesia menuju Modern Agriculture, yang menuntut perlunya inovasi yang responsif terhadap dinamika iklim berbasis biosains, bioenjinering dan aplikasi IT dengan memanfaatkan advance technology (Teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing).

Tindak lanjut pelaksanaan kebijakan tersebut, Menteri Pertanian telah menetapkan Peraturan Menteri Pertanian No.61/Permentan/OT.140/10/2010 tentang Organisasi dan Tata Kerja Kementerian Pertanian, yang menyatakan bahwa Balitbangtan mempunyai tugas melaksanakan penelitian dan pengembangan pertanian, dengan fungsi sebagai (1) penyusun kebijakan teknis, (2) pelaksanaan penelitian dan pengembangan pertanian, (3) pemantauan,
evaluasi dan pelaporan pelaksanaan penelitian dan pengembangan pertanian, serta (4) pelaksanaan administrasi Balitbangtan.

Struktur organisasi Balitbangtan tahun 2015 masih tidak berubah, disusun berdasarkan pendekatan komoditas, bidang masalah, teknologi spesifik lokasi dan pendekatan hulu-hilir, yaitu meliputi: (1) Sekretariat Badan; (2) empat Puslitbang yang menangani komoditas, (3) dua Pusat di bawah Sekjen Kementan yang pembinaannya diserahkan di bawah Balitbangtan, (4) tujuh Balai Besar yang menangani litbang komoditas/bidang masalah, (5) lima belas Balit komoditas/bidang masalah, (6) tiga Lolit komoditas/bidang masalah, (7) tiga puluh satu BPTP yang melaksanakan pengkajian dan diseminasi teknologi spesifik lokasi, (8) dua LPTP yang melaksanakan pengkajian dan diseminasi teknologi spesifik lokasi, dan (9) Satu Balai yang berada di bawah Sekretariat, menangani alih dan teknologi serta bagi pembangunan pertanian nasional.

Dalam menjalankan perannya, Balitbangtan berupaya terus untuk mengantisipasi permasalahan pertanian yang semakin kompleks. Seiring dengan pertambahan jumlah penduduk yang masih tinggi dan perubahan iklim yang ditandai oleh terjadinya cuaca ekstrem dengan laju frekuensi yang berlebihan sehingga mengancam keberlanjutan produksi pertanian. Degradasi lahan, konversi lahan produktif untuk keperluan nonpertanian, fragmentasi lahan, perkembangan hama penyakit tanaman, lemahnya modal petani, makin memudarnya minat generasi muda untuk terjun pada sektor pertanian juga merupakan sederetan masalah yang dihadapi sektor pertanian ke depan.

Dalam rangka mengatasi permasalahan tersebut, Balitbangtan telah, sedang dan akan terus berinisiatif melakukan langkah-langkah visioner melalui reorganisasi dan restrukturisasi program, optimalisasi pemanfaatan dan peningkatan sumberdaya penelitian yang dimiliki.

Paradigma Balitbangtan dalam era pembangunan yang makin kompetitif adalah penciptaan teknologi pertanian yang memiliki nilai tambah ekonomi yang tinggi untuk mewujudkan peran litbang dalam pembangunan pertanian (impact recognition) dan nilai ilmiah tinggi (scientific mission/recognition) untuk pencapaian status sebagai lembaga penelitian berkelas dunia (a world class research institution). Perubahan lingkungan strategis baik internal maupun eksternal harus dijawab dengan meningkatkan prioritas dan kualitas hasil litbang yang berorientasi pasar baik domestik maupun internasional dan berdaya saing.
tinggi. Guna menjawab kesemuanya itu, ke depan Balitbangtan akan meningkatkan kerja sama/ networking baik dengan pemerintah daerah, lembaga penelitian dan pelaku usaha nasional maupun internasional.

Balitbangtan memiliki 66 UK/UPT dengan jumlah pegawai 7.525 personil pada Tahun 2015, yang terdiri dari 3.026 tenaga fungsional (40,2%) dan 4.499 tenaga non fungsional/staf umum (59,8%). Proporsi tenaga fungsional yang ada saat ini belum ideal bagi Balitbangtan ditinjau dari peran dan fungsinya sebagai penghasil inovasi. Kondisi ideal yang diharapkan adalah lebih dari 60% pegawai merupakan tenaga fungsional.

Berdasarkan jenjang pendidikan, komposisi SDM Balitbangtan pada tahun 2015 terdiri atas 3.923 pegawai (52%) berpendidikan dibawah S1, 1.951 pegawai (26%) berpendidikan S1, 1.147 pegawai (15%) berpendidikan S2 dan 504 pegawai (7%) berpendidikan S3. Perkembangan SDM Balitbangtan berdasarkan jenjang pendidikan pada tahun 2012 – 2015 disajikan dalam Tabel 1 dan berdasarkan jabatan fungsional dapat dilihat pada Tabel 2.

Tabel 1. Perkembangan Komposisi SDM Balitbangtan Tahun 2012 – 2015 menurut Tingkat Pendidikan

<table>
<thead>
<tr>
<th>No</th>
<th>Pendidikan</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S3</td>
<td>397</td>
<td>441</td>
<td>473</td>
<td>504</td>
</tr>
<tr>
<td>2</td>
<td>S2</td>
<td>1.100</td>
<td>1.088</td>
<td>1.121</td>
<td>1.147</td>
</tr>
<tr>
<td>3</td>
<td>S1</td>
<td>2.010</td>
<td>1.969</td>
<td>1.926</td>
<td>1.951</td>
</tr>
<tr>
<td>4</td>
<td><S1</td>
<td>4.273</td>
<td>4.145</td>
<td>3.934</td>
<td>3.923</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>7.780</td>
<td>7.643</td>
<td>7.454</td>
<td>7.525</td>
</tr>
</tbody>
</table>

Sumber data : Statistik Balitbangtan, data diolah, Desember 2015

Berdasarkan bidang tugasnya, SDM Balitbangtan pada tahun 2015 sebanyak 7.525 orang. Sedangkan untuk Tahun 2015 terdiri atas tenaga fungsional sebanyak 3.026 orang atau sebesar 40,2 %. Adapun perkembangan jumlah

<table>
<thead>
<tr>
<th>No</th>
<th>Jabatan Fungsional</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peneliti</td>
<td>1.628</td>
<td>1.650</td>
<td>1.780</td>
<td>1.859</td>
</tr>
<tr>
<td>2</td>
<td>Perekayasa</td>
<td>37</td>
<td>41</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Penyuluh</td>
<td>227</td>
<td>248</td>
<td>291</td>
<td>330</td>
</tr>
<tr>
<td>4</td>
<td>Teknisi Litkayasa</td>
<td>529</td>
<td>587</td>
<td>549</td>
<td>593</td>
</tr>
<tr>
<td>5</td>
<td>Pustakawan</td>
<td>88</td>
<td>90</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Pranata Komputer</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Arsiparis</td>
<td>27</td>
<td>31</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Perencana</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Analis Kepegawaian</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Pranata Humas</td>
<td>3</td>
<td>9</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Fungsional Umum dan struktural</td>
<td>5.113</td>
<td>4.446</td>
<td>4.451</td>
<td>4.499</td>
</tr>
<tr>
<td>12</td>
<td>Statistik</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Fungsinal Tertentu Lainnya</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>7.694</td>
<td>7.156</td>
<td>7.338</td>
<td>7.525</td>
</tr>
</tbody>
</table>

Sumber data: Statistik Balitbangtan, data diolah, Desember 2015

Balitbangtan saat ini memiliki 165 laboratorium yang tersebar di UK/UPT, 30 laboratorium diantaranya sedang dalam proses akreditasi, dan laboratorium baru yang terdiri dari laboratorium Bank Gen, Biologi Molekuler, Virologi, Fitopatologi, Ekofisiologi, Gas Rumah Kaca, Pengujian Alsintan, Analisis dan Uji Tanah, Uji Mutu Benih, Uji Multi Hasil dan lain – lain.

Pada periode 2015 – 2019, setiap UK/UPT lingkup Balitbangtan harus menyusun strategi pengembangan laboratorium yang mencakup jenis, ruang lingkup, dan akreditasinya dengan mempertimbangkan kompetensi SDM yang akan menangani.

Tabel 3. Laboratorium Pengujian Terakreditasi KAN

<table>
<thead>
<tr>
<th>No</th>
<th>UPT</th>
<th>Jenis Laboratorium</th>
<th>Status dan Tahun Akreditasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BB Padi</td>
<td>Laboratorium Fisiologi Hasil</td>
<td>SNI ISO/IEC 17025-2005/2005</td>
</tr>
</tbody>
</table>
Selain laboratorium, Kebun Percobaan (KP) sebagai media atau lokalita pelaksanaan penelitian dan pengembangan berperan penting dalam mendukung pelaksanaan tupoksi masing–masing UK/UPT. KP dituntut untuk dapat menghasilkan data dan informasi hasil penelitian dan pengembangan pertanian yang sahih. KP di lingkup Balitbangtan merepresentasikan kondisi agroekosistem nusantara. Hingga saat ini, penggunaan KP belum maksimal, baru sekitar <45%, antara lain digunakan untuk lahan penelitian dan pengkajian, koleksi plasma nutfah, produksi benih sumber, show window teknologi, kebun produksi dan model agribisnis, diversifikasi dan ketahanan pangan, dan media pendidikan/media agrowisata/ecopark.

Selain laboratorium, keberadaan Kebun Percobaan (KP) secara agroekosistem mempunyai peran sangat besar dan memberikan kontribusi nyata bagi Balitbangtan dalam menghasilkan teknologi. Sampai dengan tahun 2015 Balitbangtan didukung oleh 119 KP dengan luas total sebesar 4.618,07 ha.

<table>
<thead>
<tr>
<th>No</th>
<th>UPT</th>
<th>Jenis Laboratorium</th>
<th>Status dan Tahun Akreditasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.</td>
<td>BPTP Sumut</td>
<td>Laboratorium Tanah dan Tanaman</td>
<td>SNI ISO/IEC 17025-2005/2010</td>
</tr>
<tr>
<td>40.</td>
<td>BPTP Jatim</td>
<td>Laboratorium Tanah</td>
<td>SNI ISO/IEC 17025-2005/2012</td>
</tr>
<tr>
<td>41.</td>
<td>BPTP NTB</td>
<td>Laboratorium Tanah</td>
<td>SNI ISO/IEC 17025-2005/2008</td>
</tr>
<tr>
<td>42.</td>
<td>BPTP NTB</td>
<td>Laboratorium Pengujian</td>
<td>SNI ISO/IEC 17025-2005/2008</td>
</tr>
<tr>
<td>44.</td>
<td>BPTP Kaltim</td>
<td>Laboratorium Tanah</td>
<td>SNI ISO/IEC 17025-2005/2005</td>
</tr>
</tbody>
</table>

Sumber data: i-asset Balitbangtan, data diolah, Desember 2015
tersebar di 45 UPT. Secara umum kondisinya sangat bervariasi, baik luas, status lahan, penggunaan dan pemanfaatan, maupun keragaannya. Kebun Percobaan tersebut tersebar di berbagai wilayah pada kondisi agroklimat yang berbeda-beda dengan ketinggian mulai dataran rendah sampai dengan dataran tinggi.

Berdasarkan fungsinya KP dioptimalisaskan pendayagunakannya antara lain : 1) Aktualisasi pelaksanaan litbang melalui penggunaan kebun percobaan untuk melaksanakan kegiatan penelitian dan pengembangan pertanian dan koleksi plasma nutfah, (2) Aktualisasi keunggulan teknologi hasil penelitian dengan menggunakan kebun percobaan untuk diseminasi teknologi melalui show window teknologi, diversifikasi dan ketahanan pangan, dan agro widya wisata hasil Balitbangtan, (3) Pendukung pembiayaan litbang: Pemanfaatan untuk peningkatan PNBP, dan Pemanfaatan untuk kerjasama untuk mendapatkan hibah

Dalam memaksimalkan tupoksi Balitbangtan terutama dalam penyebarluasan varietas-varietas unggul baru, telah diupayakan melalui pembentukan Unit Pengelola Benih Sumber (UPBS), yang berperan dalam 1) Meningkatkan
produksi, mutu, dan distribusi benih sumber; 2) Mempercepat pengembangan varietas unggul baru; 3) Memantapkan kelembagaan perbenihan untuk menjamin distribusi benih; dan 4) Mendukung upaya penyediaan benih bermutu bagi petani. Saat ini, telah ada 47 UPT lingkup Balitbangtan sebagai pelaksana UPBS dan telah memproduksi berbagai jenis benih (FS, SS dan ES) dari komoditas tanaman pangan, tanaman hortikultura dan perkebunan maupun peternakan. Keberadaan UPBS diharapkan dapat membantu mempercepat penyediaan varietas baru, terutama kelas benih *Breeder Seed* (Benih Penjenis) dan *Foundation Seed* (benih dasar) yang selanjutnya diperbanyak oleh penangkar lain menjadi kelas benih yang lebih rendah yaitu *Stock Seed* (Benih Pokok) dan *Extension Seed* (benih Sebar).

Pengembangan sumber daya ilmu pengetahuan dan teknologi (IPTEK) ditujukan untuk mengubah penggunaan IPTEK dari yang berciri tradisional ke arah yang lebih maju. Dengan sumberdaya yang terbatas dan tatanan pasar yang sangat kompetitif, penerapan inovasi teknologi merupakan faktor kunci dalam pengembangan pertanian industrial unggul berkelanjutan. Inovasi teknologi harus bermanfaat dalam meningkatkan kapasitas produksi dan produktivitas sehingga dapat memacu pertumbuhan produksi dan peningkatan daya saing. Inovasi teknologi juga diperlukan dalam pengembangan produk (*product development*) dalam rangka peningkatan nilai tambah, diversifikasi produk dan transformasi produk sesuai dengan preferensi konsumen.

Balitbangtan telah dan terus mengembangkan kegiatan manajemen dengan melakukan sinkronisasi dan konsolidasi dalam penyusunan strategi, arah kebijakan dan kebijakan litbang pertanian. Untuk mencapai harmonisasi perencanaan kegiatan litbang pertanian secara menyeluruh, terintegrasi, dan bersinergi dengan sektor lain dalam mencapai tujuan pembangunan pertanian, Balitbangtan perlu menyusun rencana strategis (renstra) sehingga hasil litbang yang dicapai dapat memberikan arti dalam mendukung pencapaian pembangunan pertanian nasional yang berbasis IPTEK.
BAB II. PERENCANAAN DAN PERJANJIAN KINERJA

2.1 Visi
Menjadi lembaga penelitian dan pengembangan pertanian terkemuka di dunia dalam mewujudkan sistem pertanian terkemuka di dunia dalam mewujudkan sistem pertanian bioindustri tropika berkelanjutan.

2.2. Misi
1. Merakit, menguji dan mengembangkan inovasi pertanian tropika unggul berdaya saing mendukung pertanian bioindustri.
2. Mendiseminasikan inovasi pertanian tropika unggul dalam rangka peningkatan *scientific recognition* dan *impact recognition*.

2.3. Tujuan
1. Menghasilkan dan mengembangkan inovasi pertanian tropika unggul berdaya saing mendukung pertanian bioindustri berbasis *advanced technology* dan *bioscience*, aplikasi IT, dan adaptif terhadap dinamika iklim.
2. Mengoptimalkan pemanfaatan inovasi pertanian tropika unggul untuk mendukung pengembangan iptek dan pembangunan pertanian nasional.
2.4. Sasaran
Sebagai lembaga penelitian dan pengembangan yang berkelas dunia, ada 6 sasaran strategis Balitbangtan yang harus dicapai adalah:

1. Tersedianya varietas dan galur/klon unggul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioscience.

2. Tersedianya teknologi dan inovasi budidaya, pascapanen, dan prototipe alsintan berbasis bioscience dan bioenjinering dengan memanfaatkan advance technology, seperti teknologi nano, bioteknologi, iradasi, bioinformatika, dan bioprosesing yang adaptif.

3. Tersedianya data dan informasi sumberdaya pertanian (lahan, air, ikilim dan sumberdaya genetik) berbasis bioinformatika dan geospasial dengan dukungan IT.

4. Tersedianya model pengembangan inovasi pertanian, kelembagaan, dan rekomendasi kebijakan pembangunan pertanian.

5. Tersedianya dan terdistribusinya produk inovasi pertanian (benih/bibit sumber, prototipe, peta, data, dan informasi) dan materi alih teknologi.

6. Penguatan dan perluasan jejaring kerja mendukung terwujudnya lembaga litbang pertanian yang handal dan terkemuka serta meningkatkan HKI.

2.5. Arah Kebijakan

1. Meningkatkan kapasitas produksi melalui peningkatan produktivitas dan perluasan area pertanian.

2. Meningkatkan daya saing dan nilai tambah kmoditas pertanian.

3. Meningkatkan produksi dan diversifikasi sumberdaya pertanian.

4. Pengelolaan dan pemanfaatan keanekaragaman hayati.

5. Memperkuat kapasitas mitigasi dan adaptasi perubahan iklim.

Arah kebijakan Pengembangan Balitbangtan ke depan adalah:

1. Mengembangkan kegiatan penelitian yang menunjang peningkatan produksi pertanian melalui peningkatan produktifitas, perluasan area pertanian, terutama pada lahan suboptimal, serta mendukung upaya penyediaan sumber bahan pangan yang makin beragam.

2. Mendorong pengembangan dan penerapan advance technologi untuk meningkatkan efisiensi dan efektivitas pemanfaatan sumberdaya yang terbatas jumlahnya.

3. Mendorong terciptanya suasana keilmuan dan kehidupan ilmiah yang kondusif sehingga memungkinkan optimalisasi sumberdaya manusia dalam pengembangan penelitian, perekayasaan, dan diseminasi hasil penelitian.

2.6. Program Balitbangtan

2.7. Kegiatan Balitbangtan

Sesuai dengan organisasi Balitbangtan, program Balitbangtan untuk periode 2015-2019 terdiri dari 12 kegiatan unggulan berbasis komoditas dan bidang masalah serta corporate program yang merupakan kegiatan lintas institusi dan atau lintas kepakan dalam menjawab isu tematik aktal tertentu.

Kegiatan penelitian dan pengembangan lingkup Balitbangtan adalah sebagai berikut :

2.7.1. Kegiatan Litbang Tanaman Pangan

2.7.2. Kegiatan Litbang Tanaman Hortikultura

Kegiatan Litbang Tanaman Hortikultura diarahkan pada pengembangan kawasan hortikultura dan sentra-sentra genetik hortikultura sebagai materi perakitan varietas unggul baru adaptif daerah tropis pada berbagai agroekosistem dengan berbagai keunggulan seperti umur pendek (genjah), rasa terbaik (better eating quality), tanpa biji (seedless), bentuk bagus (better performance) dan sedang digemari (trendsetter). Hal ini diharapkan akan mengurangi volatilitas harga dan memecahkan permasalahan distribusi, terutama pada komoditas hortikultura yang bulky dan voluminous.

2.7.3. Kegiatan Litbang Tanaman Perkebunan

Kegiatan litbang perkebunan difokuskan pada pemecahan masalah utama komoditas unggulan nasional guna mendukung program strategis Kementerian Pertanian, terutama untuk mewujudkan kemandirian pangan dan mensubstitusi energi fosil dengan bioenergi. Kegiatan litbang perkebunan diarahkan pada : (1) perakitan varietas unggul dan teknoogi budidaya pendukungnya, (2)
pengembangan produk olahan berupa formula dan teknologi proses, dan (3) sintesa kebijakan untuk memberikan masukan dalam pembangunan perkebunan nasional. Dalam kaitannya dengan pengembangan bahan bakar nabati, litbang perkebunan berorientasi pada pemanfaatan hasil dan limbah tanaman perkebunan dalam satu sistem bioindustri, termasuk juga, mengintegrasikan tanaman perkebunan dengan jenis tanaman lain dan ternak. Sintesa kebijakan yang bersifat responsif dan antisipatif fokus mendukung pencapaian target Kementerian Pertanian dan pengembangan komoditas strategis tanaman perkebunan.

2.7.4. Kegiatan Litbang Peternakan dan Veteriner

Kegiatan litbang peternakan dan veteriner dilaksanakan untuk mendukung ketersediaan protein hewani melalui : pengelolaan dan pemanfaatan sumber daya genetik, dan perakitan galur baru ternak dan varietas tanaman pakan mengantisipasi perubahan iklim. Selain itu diperlukan perakitan teknologi pakan berbasis bioindustri, teknologi reproduksi, budi daya ternak, dan tanaman pakan ternak yang beradaptasi pada kondisi perubahan iklim serta rekomendasi kebijakan peternakan dan veteriner. Penelitian pakan memanfaatkan biomassa (peternakan bioindustri) yang terintegrasi dapat menekan harga pakan, sehingga produk peternakan dapat diperoleh dengan harga yang lebih terjangkau. Corporate program berupa pengembangan sistem integrasi ternak tanaman dilaksanakan terhadap komoditas pangan, hortikultura dan perkebunan yang berbasis pengembangan kawasan. Sedangkan teknologi veteriner berbasis bioscience dan bioengineering dilaksanakan untuk mendukung peningkatan populasi ternak, melalui peningkatan status kesehatan hewan, keamanan pangan dan pakan, serta pengendalian penyakit.

2.7.5. Kegiatan Litbang Sumber Daya Lahan Pertanian

Kegiatan litbang sumber daya lahan pertanian diarahkan pada inventarisasi dan evaluasi potensi sumber daya pertanian, meliputi pemetaan tanah dan pemetaan tematik di lokasi terpilih, yang dilakukan dengan memanfaatkan citra satelit, Digital Elevation Model (DEM) berbasis Global Information System (GIS). Penelitian optimalisasi pemanfaatan sumber daya lahan, diarahkan kepada sistem pertanian ramah lingkungan, berupa pengembangan inovasi teknologi pengelolaan sumber daya lahan pertanian (sawah, lahan kering, lahan rawa, iklim dan air), formulasi pupuk dan pembenah tanah (anorganik, organik, hayati
dan pengembangan teknologi nano). Selain itu juga dilaksanakan analisis kebijakan terkait dengan pengelolaan sumberdaya lahan, pupuk dan pembenahan tanah, dan antisipasi dampak perubahan iklim, serta pengembangan sistem basis data dan teknologi sistem informasi pertanian berbasis web.

2.7.6. Kegiatan Litbang Bioteknologi dan Sumber Daya Genetik Pertanian

Kegiatan Litbang Bioteknologi dan Sumber Daya Genetik Pertanian diarahkan kepada (1) pemetaan dan eksplorasi gen-gen penting, serta sekuensing dan anotasi genom tanaman, ternak, dan mikroba yang berguna dalam perbaikan genetik komoditas pertanian, (2) aplikasi teknik seluler, mutagenesis, molekuler dan rekayasa genetik dalam perakitan varietas atau galur-galur unggul berpotensi hasil tinggi, efisiensi dalam penggunaan pupuk, tahan cekaman biotik, dan toleran cekaman abiotik seperti kekeringan, banjir, salinitas, kemasaman, (3) identifikasi dan produksi senyawa biokimia dari SDG pertanian untuk pengembangan bahan pangan baru, peningkatan nilai tambah, pengendalian OPT ramah lingkungan, dan pengembangan bioenergi, (4) pengelolaan SDG pertanian secara terpadu melalui pelestarian, pengayaan, pendayagunaan, dan pengelolaan sistem informasinya.

2.7.7. Kegiatan Penelitian Sosial Ekonomi dan Kebijakan Pertanian

Kegiatan Penelitian Sosial Ekonomi dan Kebijakan Pertanian ditujukan untuk menghasilkan pengetahuan, data, informasi, analisis dan rekomendasi kebijakan yang berkaitan dengan hasil: (1) kebijakan penguatan dan perlindungan usaha pertanian; (2) kebijakan sumberdaya alam, infrastruktur dan investasi pertanian; (3) kebijakan kelembagaan dan regulasi pertanian; (4) kebijakan ekonomi makro, ketahanan pangan, pengentasan kemiskinan dan pembangunan pedesaan; (5) dinamika ekonomi pertanian dan pedesaan; (6) evaluasi dan tanggap cepat atas isu kebijakan aktual.

2.7.8. Kegiatan Perekayasaan/Penelitian dan Pengembangan Mekanisasi Pertanian

Perekayasaan/litbang mekanisasi pertanian diarahkan untuk peningkatan produktivitas dan efisiensi kerja, peningkatan kualitas dan nilai tambah produk pertanian serta pemanfaatan limbahnya (biomasa). Kegiatan litbang mekanisasi pertanian difokuskan pada tiga kegiatan utama : (1) menghasilkan teknologi
mekanisasi budidaya, pascapanen dan pengolahan hasil pertanian yang berdaya saing; (2) menghasilkan teknologi mekanisasi biorafinasi dan pengelolaan limbah pertanian dan (3) menghasilkan teknologi mekanisasi otomatisasi dan instrumentasi pertanian.

2.7.9. Kegiatan Litbang Pascapanen Pertanian

Kegiatan litbang pasca panen pertanian difokuskan untuk menghasilkan teknologi dan rekomendasi kebijakan pasca panen hasil pertanian untuk meningkatkan nilai tambah dan daya saing mendukung sistem pertanian bioindustri berkelanjutan, antara lain melalui pemanfaatan nano teknologi, iradiasi, bioprocessing dan bioinformatika. Kegiatan dilakukan dalam skala laboratorium, pilot maupun skala operasional, meliputi penanganan segar produk pertanian, diversifikasi pangan dan substitusi pangan impor, serta pengembangan produk dan teknologi untuk meningkatkan nilai tambah dan daya saing produk pertanian.

2.7.10. Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi Pertanian

Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi pertanian lebih diarahkan untuk mengoptimalkan peran PUSTAKA dalam memenuhi kebutuhan informasi litkajibangdiklatluhrap melalui: (1) pengembangan jejaring informasi; (2) pengembangan sumberdaya informasi; (3) adaptasi aplikasi teknologi informasi sesuai perkembangan dan tuntutan pengguna; dan (4) pengelolaan publikasi dan penyebarrluasan informasi melalui berbagai saluran/multi – channel (SDMC).

2.7.11. Kegiatan Pengkajian dan Percepatan Diseminasi Inovasi Pertanian

Program pengkajian dan percepatan diseminasi inovasi pertanian lebih difokuskan pada pengkajian teknologi dan percepatan diseminasi inovasi teknologi dalam mewujudkan sistem pertanian bioindustri spesifik lokasi berkelanjutan. Kegiatan pengkajian spesifik lokasi dilakukan dengan memadukan hasil penelitian UK/UPT lingkup Balitbangtan dengan pemberdayaan potensi lokal. Percepatan diseminasi inovasi teknologi pertanian dilaksanakan melalui pengembangan spektrum diseminasi dan memanfaatkan berbagai channel (SDMC) untuk menunjang terwujudnya pertanian industrial perdesaan.
2.7.12. Kegiatan Dukungan Manajemen, Fasilitas dan Instrumen Teknis dalam Pelaksanaan Kegiatan Litbang Pertanian

Kegiatan pengembangan kelembagaan mencakup pengembangan budaya kerja inovatif berorientasi bisnis melalui peningkatan jumlah institusi di lingkup Balitbangtan yang menerapkan reformasi birokrasi secara menyeluruh, pengembangan sumber daya litbang (SDM, sarana dan prasarana) diikuti pengembangan standarisasi dan akreditasi lembaga dan pranata litbang. Di samping itu, untuk memicu tercapainya output yang optimal, maka akan dilakukan pengembangan manajemen teknologi dan sistem informasi, koordinasi jaringan kerja sama penelitian dan pengkajian, reformasi perencanaan dan penganggaran, monitoring dan evaluasi serta penyiapan regulasi paten dan lisensi.

Kegiatan Corporate Program merupakan kegiatan litbang yang bersifat lintas kepakaran (keahlian) yang melibatkan institusi baik di dalam atau luar lingkup Balitbangtan yang disusun secara tematik, comprehensive, scientific base, dan cross cutting issues yang dikendalikan dalam kesatuan manajemen yang tidak dibatasi oleh klasterisasi unit kerja. Kegiatan Corporate Program dilaksanakan terutama untuk : (1) mendukung secara langsung pencapaian terget-terget pembangunan pertanian yang sudah ditetapkan oleh Kementerian Pertanian, (2) pengembangan iptek pertanian.

Adapun ciri-ciri kegiatan yang dapat dikategorikan sebagai corporate program adalah :

a. Ditujukan untuk menjawab isu strategi jangka pendek dan menengah (maksimal 5 tahun).

b. Mampu menjawab pemasalahan terkait dengan program strategis Kementan (bersifat aplikatif konvergen).

c. Merupakan kegiatan pemecahan masalah bersifat cross cutting issues (multi aspek).

d. Penelitian/kajian yang komprehensif melibatkan seluas mungkin bidang keahlian (multi disciplinary study).
e. Melibatkan partisipasi berbagai lembaga litbang dan stakeholders (pemda, swasta dan petani) dalam kerangka sinergi sistem quarto helix (akademis, pemerintah, swasta, farmers community).

f. Manajemen program dikoordinir oleh salah satu Unit Kerja (UK) sebagai leading institution.

2.8. Indikator Kinerja Utama

Berdasarkan 6 (enam) sasaran strategis yang telah ditetapkan oleh Balitbangtan, maka pada periode awal RPJMN 2015 – 2019, disusunlah 14 (empat belas) Indikator Kinerja Utama (IKU) Balitbangtan tahun 2015-2019 sebagai parameter pengukuran realisasi capaian setiap sasaran dengan rincian sebagai berikut:

Sasaran strategis pertama:
Tersedianya varietas dan galur/klon unggul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioscience.

Strategi:
1. Pengembangan kegiatan riset bersama melalui konsorsium riset dengan bekerjasama dengan berbagai lembaga terkait.
2. Perencanaan kegiatan riset berbasis kebutuhan konsumen antara (eselon satu terkait lingkup Kemtan) dan pengguna akhir.
3. Memanfaatkan advance technology mempercepat penciptaan varietas unggul baru dan mendukung pengembangan bioindustri
4. Melindungi, melestarikan dan memanfaatkan kekayaan sumberdaya genetik,
5. Menumbuhkembangkan penelitian dasar untuk mendukung penelitian terapan dan inovatif

Sasaran strategis kedua:
Tersedianya teknologi dan inovasi budidaya, pasca panen, dan prototipe alsintan berbasis bioscience dan bioenjinering dengan memanfaatkan advanced technology, seperti: teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang adaptif.
Strategi:

1. Pengembangan kegiatan riset bersama melalui konsorsium riset dengan bekerjasama dengan berbagai lembaga terkait.
2. Perencanaan kegiatan riset berbasis kebutuhan konsumen antara (eselon satu terkait lingkup Kementan) dan pengguna akhir.
3. Memanfaatkan *advance technology* mempercepat penciptaan varietas unggul baru dan mendukung pengembangan bioindustri.
4. Melindungi, melestarikan dan memanfaatkan kekayaan sumberdaya genetik,
5. Menumbuhkembangkan penelitian dasar untuk mendukung penelitian terapan dan inovatif.

Sasaran strategis ketiga:

Tersedianya data dan informasi sumberdaya pertanian (lahan, air, iklim dan sumberdaya genetik) berbasis bio-informatika dan geo-spatial dengan dukungan IT.

Strategi:

1. Mengembangkan model prediksi dan sistem informasi pertanian berbasis geo-spatial serta memanfaatkan Teknologi Informasi dan Komunikasi (TIK) dengan sistem cloud computing.
2. Pengembangan kegiatan riset bersama melalui konsorsium riset dengan bekerjasama dengan berbagai lembaga terkait.
3. Perencanaan kegiatan riset berbasis kebutuhan konsumen antara (eselon satu terkait lingkup Kementan) dan pengguna akhir.
4. Pengelolaan dan pemanfaatan sumberdaya lahan eksisting dan sumberdaya genetik secara berkelanjutan.
5. Melaksanakan reforma agraria berbasis tata kelola lahan sebagai pondasi dan modal dasar pembangunan pertanian,
6. Memperluas dan melakukan konservasi dan rehabilitasi lahan dan keanekaragaman hayati.
7. Mengembangkan sistem adaptasi dan mitigasi terhadap perubahan iklim.
Sasaran strategis 4:
Tersedianya model pengembangan inovasi pertanian, kelembagaan, dan rekomendasi kebijakan pembangunan pertanian.

Strategi:
1. Melakukan berbagai uji coba dan pengembangan model pembangunan pertanian dalam berbagai skala ekonomi.
2. Merumuskan rekomendasi kebijakan, organisasi dan kelembagaan terutama berkaitan dengan peningkatan efektivitas sinergi program pembangunan pertanian
3. Pengembangan kegiatan riset bersama melalui konsorsium riset dengan bekerjasama dengan berbagai lembaga terkait.
4. Perencanaan kegiatan riset berbasis kebutuhan konsumen antara (eselon satu terkait lingkup Kementerian Pertanian) dan pengguna akhir.
5. Menumbuhkembangkan penelitian dasar untuk mendukung penelitian terapan dan inovatif

Sasaran strategis 5:
Tersedia dan terdistribusinya produk inovasi pertanian (benih/bibit sumber, prototipe, peta, data, dan informasi) dan materi transfer teknologi.

Strategi:
1. Meningkatkan perakitan dan penyediaan varietas/galur unggul, benih, bibit, yang didukung oleh inovasi sistem perbenihan yang handal dan berdaya saing serta memperkuat Unit Pengelolaan Benih Sumber (UPBS).
2. Optimalisasi sumber daya penelitian dalam rangka memacu peningkatan produktivitas dan berdampak luas (impact recognition) melalui kegiatan diseminasi yang intensif.
4. Meningkatkan kapasitas lembaga inovasi (penelitian, diseminasi, penyuluhan) melalui sinergi dan kerjasama yang saling menguatkan.
5. Meningkatkan promosi dan mengakselerasi diseminasi hasil penelitian melalui Spektrum Diseminasi Multi Channel kepada seluruh stakeholders nasional melalui jejaring PPP (public-private-partnership) maupun internasional untuk mempercepat proses pencapaian sasaran pembangunan pertanian (impact recognition) pengakuan ilmiah internasional (scientific recognition) dan perolehan sumber-sumber pendanaan penelitian lainnya diluar APBN (eksternal fundings).

Sasaran Strategis 6:

Penguatan dan perluasan jejaring kerja mendukung terwujudnya lembaga litbang pertanian yang handal dan terkemuka.

Strategi :

2. Membangun budaya baru penelitian yang menghargai daya cipta dengan insentif yang dapat memotivasi peningkatan kinerja penelitian dan diperolehnya HKI.

3. Membangun jejaring dan tatakelola inovasi untuk meningkatkan inovasi kreatif melalui kemitraan dengan lembaga penelitian pemerintah dan swasta.

4. Meningkatkan kuantitas, kualitas dan kapabilitas sumberdaya penelitian melalui perbaikan sistem rekrutmen dan pelatihan SDM, penambahan sarana dan prasarana, dan struktur penganggaran yang sesuai dengan kebutuhan institusi litbang dalam mewujudkan sistem pertanian bioindustri berkelanjutan.

2.9. Rencana Kinerja Tahun 2015

Untuk mempertajam rencana pencapaian target kinerja yang tertuang dalam renstra 2015–2019, Badan Litbang menetapkan rencana kinerja tahunan. Rencana Kinerja Tahunan (RKT) merupakan dokumen yang berisi penjabaran dari renstra yang memuat seluruh rencana atau target kinerja yang hendak dicapai dalam satu tahun anggaran dan tertuang dalam sejumlah indikator kinerja strategis yang relevan.

Untuk tahun 2015, Balitbangtan telah merencanakan untuk merealisasikan 14 indikator kinerja sebagai penjabaran atas 6 (enam) sasaran strategis dengan rincian sebagai berikut:

Tabel 4. Sasaran dan Indikator Kinerja Utama Balitbangtan 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Sasaran Strategis</th>
<th>Indikator Kinerja</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tersedianya varietas dan galur/klon unggul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioscience</td>
<td>1. Jumlah varietas dan galur/klon unggul baru tanaman dan ternak.</td>
<td>79 Varietas/VUB/Galur</td>
</tr>
<tr>
<td>2.</td>
<td>Tersedianya teknologi dan inovasi budidaya, pasca panen dan prototipe alsintan berbasis bioscience dan bioenjinering dengan memanfaatkan advanced technology, seperti teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang adaptif.</td>
<td>1. Jumlah teknologi pengelolaan lahan, air, agroklimat, dan sumberdaya genetik.</td>
<td>14 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi budidaya</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah teknologi spesifik lokasi</td>
<td>94 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Jumlah prototipe alsintan</td>
<td>66 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah teknologi pasca panen dan pengolahan</td>
<td>7 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 Teknologi</td>
</tr>
<tr>
<td>3.</td>
<td>Tersedianya data dan informasi sumberdaya pertanian (lahan, air, iklim)</td>
<td>1. Jumlah peta tematik sumberdaya lahan dan sumberdaya genetik</td>
<td>60 Peta</td>
</tr>
</tbody>
</table>

Badan Penelitian dan Pengembangan Pertanian
Laporan Kinerja Instansi Pemerintah Tahun 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Sasaran Strategis</th>
<th>Indikator Kinerja</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dan sumberdaya genetik) berbasis bio informatika dan geo – spasial dengan dukungan IT</td>
<td>1. Jumlah model pengembangan inovasi pertanian bio – industri</td>
<td>77 model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>91 Rekomendasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi yang diseminasikan ke pengguna</td>
<td>96 Teknologi</td>
</tr>
<tr>
<td>5.</td>
<td>Tersedianya dan terdistribusinya produk inovasi pertanian (benih/bibit sumber, prototipe, peta) dan materi transfer teknologi</td>
<td>1. Jumlah kerjasama</td>
<td>150 Kontrak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah HKI</td>
<td>45 Invensi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah artikel yang dipublikasikan</td>
<td>189 Judul</td>
</tr>
</tbody>
</table>

Keterangan: Dokumen Renstra 2015-2019 (edisi tanggal 29 April 2015)

Untuk mempertajam rencana pencapaian target kinerja yang tertuang dalam renstra 2015 – 2019, Badan Litbang menetapkan rencana kinerja tahunan. Rencana Kinerja Tahunan (RKT) merupakan dokumen yang berisi penjabaran dari renstra yang memuat seluruh rencana atau target kinerja yang hendak dicapai dalam satu tahun anggaran dan tertuang dalam sejumlah indikator kinerja strategis yang relevan. Untuk tahun 2015, Balitbangtan telah merencanakan untuk merealisasikan 14 indikator kinerja sebagai penjabaran atas 6 (enam) sasaran strategis dengan rincian sebagai berikut:
Tabel 5. Rencana Kinerja Tahunan TA. 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Sasaran Strategis</th>
<th>Indikator Kinerja</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tersedianya varietas dan galur/klon unggul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioscience</td>
<td>1. Jumlah varietas dan galur/klon unggul baru tanaman dan ternak.</td>
<td>79 Varietas/VUB/Galur</td>
</tr>
<tr>
<td>2.</td>
<td>Tersedianya teknologi dan inovasi budidaya, pasca panen dan prototipe alsintan berbasis bioscience dan bioenjiniring dengan memanfaatkan advanced technology, seperti teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang adaptif.</td>
<td>1. Jumlah teknologi pengelolaan lahan, air, agroklimat, dan sumberdaya genetik.</td>
<td>27 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi budidaya.</td>
<td>82 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah teknologi spesifik lokasi.</td>
<td>66 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Jumlah prototipe alsintan.</td>
<td>7 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah teknologi pasca panen dan pengolahan</td>
<td>13 Teknologi</td>
</tr>
<tr>
<td>3.</td>
<td>Tersedianya data dan informasi sumberdaya pertanian (lahan, air, iklim dan sumberdaya genetik) berbasis bio informatika dan geo – spasial dengan dukungan IT</td>
<td>1. Jumlah peta tematik sumberdaya lahan dan sumberdaya genetik</td>
<td>60 Peta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>90 Rekomendasi</td>
</tr>
<tr>
<td>5.</td>
<td>Tersedianya dan terdistribusinya produk inovasi pertanian (benih/bibit sumber, prototipe, peta) dan materi</td>
<td>1. Jumlah benih/bibit sumber tanaman/ternak.</td>
<td>13.467 Ton/Ekor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi yang</td>
<td></td>
</tr>
</tbody>
</table>
Terdapat beberapa perbedaan target antara dokumen Rencana Kinerja Tahunan TA 2015 Balitbangtan dengan Renstra Balitbangtan 2015-2019 diantara (1) sasaran strategis 2 dengan indikator jumlah teknologi pengelolaan lahan, air, agroklimat dan sumberdaya genetik di RKT lebih besar yaitu 27 teknologi sementara di Renstra hanya 14 teknologi; indikator jumlah teknologi budidaya di RKT di Renstra lebih besar yaitu 94 teknologi sementara di RKT hanya 82 teknologi; (2) sasaran strategis 4 dengan indikator jumlah model pengembangan inovasi pertanian bio-industri di Renstra lebih besar yaitu 77 model sementara di RKT hanya 76 model dan indikator jumlah rekomendasi kebijakan pembangunan pertanian di Renstra lebih besar yaitu 91 rekomendasi sementara di RKT hanya 90 rekomendasi. Hal ini disebabkan adanya penyesuaian dengan realisasi pada tahun-tahun sebelumnya, jika tahun sebelumnya relatif besar realisasinya maka targetnya di RKT ikut menyesuaikan begitu juga sebaliknya.

2.10. Perjanjian Kinerja Tahun 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Sasaran Strategis</th>
<th>Indikator Kinerja</th>
<th>Target</th>
</tr>
</thead>
</table>
2. Jumlah HKI.
3. Jumlah artikel yang dipublikasikan | 150 Kontrak
45 Invensi
189 Judul |

Sumber data : Dokumen RKT Balitbangtan TA. 2015
Tabel 6. Perjanjian Kinerja Tahun TA. 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Sasaran Program</th>
<th>Indikator</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Penciptaan Teknologi dan Inovasi Pertanian Bio-Industri Berkelanjutan</td>
<td>1. Jumlah Varietas (Galur/Klon) Unggul Baru.</td>
<td>89 Varietas (Galur)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi dan inovasi peningkatan produksi pertanian.</td>
<td>223 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah model sistem kelembagaan dan inovasi spesifik lokasi.</td>
<td>76 Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah Agro Techno Park (ATP).</td>
<td>16 Kabupaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Jumlah rekomendasi kebijakan pembangunan pertanian.</td>
<td>102 Rekomendasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Jumlah benih sumber tanaman.</td>
<td>3.487 Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Jumlah teknologi yang didiseminasikan ke pengguna</td>
<td>276 Teknologi</td>
</tr>
</tbody>
</table>

BAB III. AKUNTABILITAS KINERJA

Pada Bab ini diuraikan kriteria keberhasilan (realisasi terhadap target), sasaran kegiatan yang dilaksanakan serta permasalahan dan upaya yang telah dilakukan. Untuk mengukur keberhasilan kinerja ditetapkan 4 (empat) kategori keberhasilan, yaitu (1) sangat berhasil: > 100%, (2) berhasil: 80 – 100%, (3) cukup berhasil: 60 – 79%, dan tidak berhasil: 0 – 59%. Realisasi sampai akhir tahun 2015 menunjukkan bahwa sasaran telah dapat dicapai dengan rata-rata capaian sebesar 104,55% (sangat berhasil).

Keberhasilan pencapaian sasaran disebabkan oleh faktor pengawalan kegiatan melalui monitoring dan evaluasi kegiatan penelitian yang cukup ketat, mulai dari tahap awal hingga tahap akhir kegiatan. Keberhasilan pencapaian sasaran tersebut juga didorong oleh dukungan manajemen penelitian, baik aspek pelayanan keuangan, pengolahan data, perpustakaan, publikasi, dan sarana penelitian.

Monitoring dan evaluasi pelaksanaan kegiatan dilakukan untuk memastikan tercapainya target setiap kegiatan. Metode yang dilakukan adalah dengan memantau capaian kinerja setiap bulan ataupun triwulanan beserta kendala yang dihadapi. Sehingga dengan demikian diharapkan bila tidak tercapainya target suatu indikator dapat diantisipasi sejak awal.

3.1. Pengukuran Capaian Kinerja Tahun 2015

Pengukuran tingkat capaian kinerja Balitbangtan tahun 2015 dilakukan dengan membandingkan antara target dengan capaiannya. Berdasarkan perjanjian kinerja Balitbangtan mempunyai 1 (satu) sasaran dan 9 (sembilan) indikator kinerja utama (IKU) dengan target dan capaian untuk tahun 2015 adalah sebagai berikut:
Tabel 7. Capaian Kinerja Indikator Sasaran RPJMN Badan Litbang Pertanian Tahun 2015

<table>
<thead>
<tr>
<th>Sasaran</th>
<th>Indikator Kinerja</th>
<th>Uraian</th>
<th>Target</th>
<th>Capaian</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penciptaan Teknologi dan Inovasi Pertanian Bioindustri Berkelanjutan</td>
<td>Jumlah (varietas/klon) Unggul Baru (VUB)</td>
<td>89</td>
<td>95</td>
<td>106,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah teknologi dan inovasi peningkatan produksi pertanian (teknologi)</td>
<td>223</td>
<td>408</td>
<td>106,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah model sistem kelembagaan dan inovasi spesifik lokasi (model)</td>
<td>76</td>
<td>76</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah Agro Science Park (ASP) (propinsi)</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah Agro Techno Park (ATP) (kabupaten)</td>
<td>16</td>
<td>16</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah rekomendasi kebijakan pembangunan pertanian (rekomendasi)</td>
<td>102</td>
<td>131</td>
<td>128,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah benih sumber tanaman (ton)</td>
<td>3.487</td>
<td>2.132,19</td>
<td>61,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah bibit sumber ternak (ekor)</td>
<td>12.375</td>
<td>14.547</td>
<td>117,55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah teknologi yang didiseminasi ke pengguna (teknologi)</td>
<td>276</td>
<td>334</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>
Indikator kinerja berdasarkan RPJMN tersusun dari indikator kinerja yang tersebar pada kegiatan yang dilaksanakan oleh unit kerja lingkup Balitbangtan, adalah sebagai berikut:

1. Indikator kinerja jumlah varietas memiliki target sebesar 89 VUB/Galur yang terdiri dari atas 16 VUB tanaman pangan, 7 VUB tanaman perkebunan, 22 VUB tanaman hortikultura, 26 galur ternak puslitbangtan dan 18 galur harapan unggul bioteknologi pertanian.

2. Indikator kinerja jumlah teknologi dan inovasi peningkatan produksi pertanian memiliki target sebesar 223 teknologi atas 5 teknologi bioteknologi pertanian, 16 teknologi pasca panen, 24 teknologi sumberdaya lahan pertanian, 66 teknologi spesifik lokasi, 8 teknologi mekanisasi pertanian, 20 teknologi hortikultura, 23 teknologi perkebunan, 44 teknologi peternakan dan 17 teknologi tanaman pangan.

3. Indikator kinerja jumlah model sistem kelembagaan dan inovasi spesifik lokasi memiliki target sebesar 76 model yang terdiri atas 2 model pasca panen, 1 model sumberdaya lahan pertanian, 66 spesifik lokasi, 1 model hortikultura, 5 model perkebunan dan 1 model tanaman pangan.

4. Indikator kinerja jumlah Agro Science Park (ASP) memiliki target sebesar 6 provinsi.

5. Indikator kinerja jumlah Agro Techno Park (ATP) memiliki target sebesar 16 kabupaten.

6. Indikator kinerja jumlah rekomendasi kebijakan pembangunan pertanian memiliki target sebesar 102 rekomendasi yang terdiri atas 2 rekomendasi bioteknologi pertanian, 4 rekomendasi pasca panen, 5 rekomendasi sumberdaya lahan pertanian, 2 rekomendasi mekanisasi pertanian, 22 rekomendasi sosial ekonomi dan kebijakan pertanian, 3 rekomendasi hortikultura, 6 rekomendasi perkebunan, 7 rekomendasi peternakan dan 9 rekomendasi tanaman pangan.

8. Indikator kinerja jumlah bibit sumber ternak memiliki target sebesar 12.375 ekor dari kegiatan litbang peternakan.

9. Indikator kinerja jumlah teknologi yang diseminaskan ke pengguna memiliki target sebesar 276 teknologi merupakan output dari kegiatan pengkajian tehnologi pertanian.

3.2. Analisis Capaian Kinerja
Pengukuran tingkat capaian kinerja Badan Litbang Pertanian tahun 2015 dilakukan dengan cara membandingkan antara target indikator kinerja sasaran dengan realisasinya. Analisis dan evaluasi capaian kinerja tahun 2015 Badan Litbang Pertanian dapat dijelaskan sebagai berikut:

<table>
<thead>
<tr>
<th>Indikator 1:</th>
<th>Jumlah Varietas (Galur Klon) Unggul Baru</th>
</tr>
</thead>
</table>

Capaian indikator kinerja pertama dapat digambarkan sebagai berikut:

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jumlah variasi unggul baru tanaman pangan (VUB)</td>
<td>16</td>
<td>16</td>
<td>100,00</td>
</tr>
<tr>
<td>2. Jumlah variasi unggul baru tanaman hortikultura (VUB)</td>
<td>22</td>
<td>21</td>
<td>95,45</td>
</tr>
<tr>
<td>3. Jumlah variasi unggul tanaman perkebunan yang berdaya saing (VUB)</td>
<td>7</td>
<td>11</td>
<td>140,0</td>
</tr>
<tr>
<td>4. Jumlah variasi unggul baru/galur harapan ternak dan tanaman pakan ternak (galur)</td>
<td>26</td>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>5. Jumlah galur harapan unggul tanaman (galur harapan unggul)</td>
<td>18</td>
<td>21</td>
<td>116,66</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
<td>95</td>
<td>106.7</td>
</tr>
</tbody>
</table>
Berdasarkan indikator kinerja pertama yang telah ditargetkan pada tahun 2015, dari 5 indikator kinerja, 1 indikator tidak mencapai target (95,45%) yaitu VUB hortikultura yang salah satu VUB masih dalam tahap penyusunan makalah, 2 indikator mencapai target 100% sedangkan 2 indikator lainnya melebihi target yaitu 140 % dan 116,67% (sangat berhasil).

Perbandingan capaian kinerja tahun 2010 – 2014 dengan 2015 :

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target/Realisasi</th>
<th>2010 - 2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jumlah varietas unggul baru tanaman pangan</td>
<td>Target</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>108 (166,15%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>2. Jumlah varietas unggul baru tanaman hortikultura (tanaman sayuran, buah tropika dan sub tropika, jeruk serta sub</td>
<td>Target</td>
<td>113</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>153 (135,40%)</td>
<td>21 (95,45%)</td>
</tr>
<tr>
<td>3. Tersedianya varietas unggul tanaman perkebunan yang berdaya saing</td>
<td>Target</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>50 (119,05%)</td>
<td>11 (140%)</td>
</tr>
<tr>
<td>4. Jumlah varietas unggul baru/galur harapan ternak dan tanaman pakan ternak</td>
<td>Target</td>
<td>68</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>96 (141,18%)</td>
<td>26 (100%)</td>
</tr>
<tr>
<td>5. Jumlah galur harapan unggul tanaman</td>
<td>Target</td>
<td>353</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>443,63 (125,67%)</td>
<td>21 (116,66%)</td>
</tr>
</tbody>
</table>

Pencapaian **Indikator Pertama** yaitu dilepasnya 16 varietas unggul baru tanaman pangan, dengan rincian 5 varietas unggul baru padi, 4 VUB aneka kacang dan umbi, dan 7 VUB serealia.
Tahun 2015 telah dilepas sebanyak 5 VUB padi yang sesuai untuk lahan tadah hujan dan lahan kering (gogo) antara lain:

1) Varietas Inpari 38

Varietas Inpari 38 Tadah Hujan Agritan agak toleran kekeringan cocok ditanam di ekosistem sawah dataran rendah sampai ketinggian 600 m dpl, agak rentan terhadap wereng coklat biotipe 1, 2, dan 3. Agak tahan terhadap hawar daun bakteri strain III, rentan terhadap strain IV dan VIII. Tahan terhadap penyakit blas ras 073, agak tahan ras 033 dan ras 133 dan rentan terhadap 173. Rentan terhadap virus tungro, tekstur nasi pulen, dengan potensi hasil 8,16 ton/ha GKG.

Gambar 1. Keragaan Varietas Inpari 38 Tadah Hujan Agritan tahan penyakit blas dengan potensi hasil 8,16 t/ha GKG

2) Varietas Inpari 39

Varietas Inpari 39 Tadah Hujan Agritan agak toleran kekeringan, cocok ditanam di ekosistem sawah dataran rendah sampai ketinggian 600 m dpl, agak rentan terhadap wereng coklat biotipe 1, 2, dan 3. Agak tahan terhadap hawar daun bakteri strain III, rentan terhadap strain IV dan VIII. Tahan terhadap penyakit blas ras 073, ras 033 dan ras 133 dan 173. Rentan terhadap virus tungro, tekstur nasi pulen dengan potensi hasil 8,45 ton/ha GKG.

Gambar 2. Keragaan Varietas Inpari 39 Tadah Hujan Agritan dengan potensi hasil 8,45 t/ha GKG
3) Varietas Inpari 40

Varietas Inpari 40 Tadah Hujan Agritan agak peka terhadap kekeringan, baik ditanam di lahan sawah tadah hujan, agak tahan terhadap HDB Ras III, IV dan Ras VIII, tahan terhadap patogen blas Ras 073 dan agak tahan terhadap patogen blas Ras 173, tekstur nasi sedang dengan potensi hasil 9,60 ton/ha GKG.

Gambar 3. Keragaan Varietas Inpari 40 Tadah Hujan Agritan potensi hasil 7,83 t/ha GKG

4) Varietas Inpari 41

Varietas Inpari 41 Tadah Hujan Agritan agak peka terhadap kekeringan, agak rentan terhadap wereng coklat biotipe 1,2 dan 3, agak tahan terhadap hawar daun bakteri strain III, rentan strain IV dan VIII, rentan penyakit tungro, tahan blas ras 133 dan 073, dan agak tahan blas ras 133 dan 173 dengan potensi hasil 7,83 t/ha GKG.

Gambar 4. Keragaan Varietas Inpari 41 Tadah Hujan Agritan potensi hasil 6,01 t/ha GKG
5) **Varietas Padi Gogo Inpago 11**

Varietas padi gogo Inpago 11 Agritan berespon moderat terhadap kekeringan pada fase vegetatif, peka keracunan Al 60 ppm, cocok ditanam di lahan keringan dataran rendah sampai 700 m dpl, tahan blas ras 033, agak tahan blas ras 073 dan 133, tahan HDB strain III dan agak tahan HDB strain VIII dengan potensi hasil 6,01 ton/ha.

![Gambar 5. Keragaan Padi Gogo Inpago 11 Agritan, peka keracunan Al 60 ppm, tahan blas ras 033](image)

Tahun 2015 telah dilepas sebanyak 4 VUB aneka kacang dan umbi antara lain:

1) **Kedelai Varietas Devon 1**

VUB kedelai Devon 1 merupakan hasil seleksi persilangan varietas Kawi dengan galur IAC 100. Potensi hasil 3,09 t/ha dengan rata-rata hasil mencapai 2,75 t/ha. Sifat keunggulannya memiliki kandungan isoflavon yang lebih tinggi dari varietas di Indonesia yang ada. Keunggulan lainnya tahan terhadap penyakit karat daun, agak tahan hama penghisap polong, dan peka hama ulat grayak.

![Gambar 6. Keragaan kedelai varietas Devon 1 potensi hasil 3,09 t/ha, tahan karat daun dan kandungan isoflavon tinggi](image)
2) **Kedelai Varietas Dega 1**

VUB kedelai Dega 1 merupakan hasil seleksi persilangan antara varietas Grobogan dan Malabar. Potensi hasil 3,8 t/ha, dengan rata-rata hasil mencapai 2,78 t/ha. Sifat keunggulan yaitu berumur genjah, biji besar, agak tahan terhadap penyakit karat daun, agak tahan hama penghisap polong, dan rentan hama ulat grayak.

![Gambar 7. Keragaan Kedelai varietas Dega 1 potensi hasil 3,8 t/ha, genjah dan biji besar](image)

3) **Kacang Tanah Hypoma 3**

Varietas unggul baru kacang tanah Hypoma 3 ini merupakan hasil seleksi silang tunggal (Macan dengan ICGV 99029). Potensi hasil 5,9 t/ha, rata-rata hasil 4,6 t/ha, tahan penyakit karat, bercak daun dan layu bakteri.

![Gambar 8. Keragaan Kacang tanah varietas Hypoma 3 dengan potensi hasil 5,9 t/ha, tahan penyakit karat, bercak daun, dan layu bakteri](image)

4) **Ubikayu Varietas Litbang UK 3**

Litbang UK 3 merupakan VUB ubikayu hasil seleksi persilangan Malang 1 (tetua betina) dan MLG 10075. Potensi hasil 41,84 t/ha dengan rata-rata hasil 30,18,4 t/ha. Varietas ini agak tahan terhadap hama tungau dan agak tahan penyakit busuk umbi.
Tahun 2015 telah dilepas sebanyak 7 VUB serealia antara lain :

1) Jagung Hibrida Varietas JH 27

Telah dilepas jagung hibrida JH 27 dengan kandungan karbohidrat ±78,45%, kandungan protein ± 7,59%, kandungan lemak ± 4,13%. Tahan terhadap penyakit bulai (*Peronosclerospora maydis*), karat daun (*Puccinia polysore*), hawar daun dataran rendah (*Helminthosporium maydis*), hawar daun dataran tinggi (*Bipolaris maydis*) dan busuk tongkol. Beradaptasi luas di dataran rendah sampai dengan tinggi (5-1.340 m dpl), umur 98 hari potensi hasil 12,6 t/ha.

2) Jagung Hibrida Varietas JH 234

Telah dilepas jagung hibrida JH 234 kandungan karbohidrat ± 78,45%, kandungan Protein ± 7,59%, kandungan Lemak ± 4,13%. Tahan terhadap penyakit bulai (*Peronosclerospora maydis*), karat daun (*Puccinia polysore*), hawar daun dataran rendah (*Helminthosporium maydis*), hawar daun dataran tinggi (*Bipolaris maydis*) dan busuk tongkol. Beradaptasi luas di dataran rendah sampai dengan tinggi (5-1.340 m dpl), umur 98 hari potensi hasil 12,6 t/ha.
tinggi (*Bipolaris maydis*) dan busuk tongkol. Beradaptasi luas di dataran rendah sampai dengan tinggi (5-1.000 m dpl), umur 98 hari potensi hasil 12,6 t/ha.

Gambar 11. Keragaan Jagung hibrida varietas JH 234 dengan potensi 12,6 t/ha tahan bulai

3) **Jagung Hibrida Varietas JH 45 URI**

Telah dilepas jagung hibrida JH 45 URI kandungan lemak : 5,06%, kandungan protein : 9,92%, kandungan karbo-hidrat : 73,86%. Tahan terhadap penyakit bulai (*Peronosclerospora maydis*), karat daun (*Puccinia sorghi*) dan hawar daun dataran rendah (*Helminthosporium maydis*). Potensi hasil tinggi, tahan rebah akar dan batang dan beradaptasi luas di dataran rendah, umur 99 hari potensi hasil 12,6 t/ha.

4) **Jagung Hibrida Varietas JH 36**

Jagung hibrida ini merupakan hibrida silang tunggal hasil persilangan antara galur murni Nei9008P sebagai tetua betina dengan galur murni GC14 sebagai tetua jantan (Nei9008P x GC14). Keunggulan varietas JH 36 antara lain berumur genjah (89 HST), biji tipe mutiara, warna biji oranye, jumlah baris biji 12-16, tahan rebah akar dan batang. Memiliki sifat tahan terhadap penyakit bulai (*Peronosclerospora maydis*), karat daun (*Puccinia sorghi*), dan hawar daun (*Helminthosporium maydis*). Potensi hasil 12,2 ton/ha pipilah kering pada kadar air 15% dengan rata-rata hasil ± 10,6 ton/ha pipilan kering pada kadar air 15%. Kandungan lemak 5,02%, protein 7,97%, dan karbohidrat 74,71%.

5) **Jagung Bersari Bebas Pulut URI 4**

Telah dilepas jagung bersari bebas Ulut Uri 4, kandungan nutrisi amilosa ± 3,82%, karbohidrat ± 74,29%, lemak ± 4,52%, protein ± 10,02%. Adaptif pada lingkungan optimal saat MH, dan lingkungan marginal saat MK, umur 88 hari potensi hasil 7,8 t/ha.
6) Gandum Guri 6 Agritan

Varietas unggul baru gandum Guri 6 Agritan, mempunyai keunggulan kandungan protein ± 14,1%, kadar abu ± 1.44%, gluten 38,0%. Resisten terhadap hawar daun (Helminthosporium sativum). Adaptif pada dataran menengah-tinggi dengan ketinggian ≥ 600 m dpl umur 100 hari potensi hasil 3,3 ton/ha.

7) Sorgum Suri 5 Agritan

Varietas Unggul Baru sorgum Suri 5 Agritan, mempunyai keunggulan kadar protein 16,02%, kadar lemak 2,52%, kadar karbohidrat 64,06%, kadar tannin 0,077%, kadar abu 1,1%, kadar gula brix 16,0%. Tahan terhadap hama aphis, agak tahan terhadap penyakit antraknose dan bercak daun. Beradaptasi baik
Status capaian realisasi 21 VUB hortikultura dapat dijelaskan sebagai berikut:

(a) VUB sayuran menghasilkan 2 VUB dengan status: 1 VUB Cabai Rawit Merah dengan SK Mentan No. 113/Kpts/SR.120/D.2.7/9/2015 dan 1 CVUB mentimun dengan nama CVUB Litsa 1 telah didaftarkan ke PPVT dan Pusat Perlindungan Varietas Tanaman dan Perizinan Pertanian (PPVTPP) dan dalam proses penilaian oleh Tim penilai dan Pendaftaran Varietas Hortikultura (TP2VH); (b) VUB tanaman buah tropika menghasilkan 1 VUB dengan status: pada akhir bulan Desember 2015 telah dilakukan pendaftaran Varietas Durian Sungai Leman dengan nama Durian Tambago Sungai Tarab; (c) VUB tanaman hias menghasilkan 17 VUB dengan status: 17 VUB sedang diproses di PPVTPP Kementerian Pertanian terdiri dari 9 VUB krisan tipe standar (Sinta Nuriyah Agrihort, Irana Agrihort, Iriani Agrihort, Rihana Agrihort, Mayangratih Agrihort, Manggarani Agrihort, Yunawati Agrihort, Marini Agrihort, dan Salina Agrihort); 4 VUB krisan tipe spray (Yulita Agrihort, Arundaya Agrihorti, Tadasita Agrihorti, dan Awlani Agrihorti); 1 VUB anggrek Phalaenopsis varietas Adelina Agrihort; serta 3 VUB gerbera (Hasri Aini Horti, Nirwasita Agrihorti, dan Candramaya Agrihorti); dan (d) VUB tanaman jeruk dan buah subtropika menghasilkan 1 VUB dengan status: Jeruk Keprok Monita Agrihorti dengan SK Mentan No. 148/Kpts/SR.120/D.2.7/6/2015.

Adapun jenis dan keunggulan 21 VUB hortikultura pada tahun 2015 adalah sebagai berikut:

2. Calon Varietas Mentimun Litsa 1, adaptif di dataran medium Kabupaten Garut, Kabupaten Sumedang dan Kabupaten Bandung pada musim kemarau dengan keunggulan daya hasil tinggi, warna hijau, tekstur buah tinggi dan daya simpan sembilan hari.

3. Durian Tambago Sungai Tarab, produksi tinggi dan warna daging buah kuning cerah.

18. Gerbera Hasri Ainun Agrihorti, Warna kuntum bunga kuning yang banyak diminati konsumen.

19. Gerbera Nirwasita Agrihorti, Piringan bunga warna hijau yang banyak diminati konsumen karena vase lifenya lebih lama.
20. Gerbera Candramaya Agrihorti, Piringan bunga coklat kehitaman serta mempunyai vase life yang relatif lama.

21. Jeruk Keprok Monita Agrihorti, warna kulit oranye (RHS 17 B – RHS 32 A), bulir agak keras, tidak mudah pecah. Produksi tinggi, rasa daging buah asam manis, kandungan air 70 – 94,1 %, kadar gula 8,3 – 11^0 brix, kandungan viatamin C 39,2-43,5 mg / 100 g, dan berat per buah 130 - 290 g; umur mulai produksi 2-3 tahun; kisaran hasil 800 -1.203 buah per tanaman.
<table>
<thead>
<tr>
<th>Photo</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Krisan Sinta Nuriyah Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Yulita Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Irana Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Iriani Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Rihana Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Mayangratih Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Manggarani Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Yunawati Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Marini Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Salina Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Arundaya</td>
</tr>
<tr>
<td></td>
<td>Krisan Tadasita Agrihort</td>
</tr>
<tr>
<td></td>
<td>Krisan Awlani Agrihort</td>
</tr>
<tr>
<td></td>
<td>Anggrek Phalaenopsis Adelina Agrihort</td>
</tr>
<tr>
<td></td>
<td>Gerbera Hasri Ainun Agrihort</td>
</tr>
</tbody>
</table>
Pencapaian *Indikator ketiga* ditargetkan dapat melepasan 7 varietas unggul baru tanaman perkebunan. Sampai dengan akhir tahun anggaran telah terealisasi pelepasan 11 varietas tanaman perkebunan (140%). Varietas unggul yang telah dilepas pada TA 2015 beserta keunggulannya adalah sebagai berikut:

1) **Kopi Liberoid Meranti 1 (LIM 1)**

![Gambar 15. Penampilan Varietas Unggul Kopi LIM 1](image)

2) **Kopi Liberoid Meranti 2 (LIM 2)**

Varietas tersebut juga merupakan hasil seleksi pada populasi kopi Liberoid di desa Kedaburapat Kecamatan Rangsang Pesisir Kabupaten Kepulauan Meranti Propinsi Riau. Kopi ini memiliki buah yang besar dan memiliki potensi produksi 2,78 kg kopi biji/pohon/tahun atau setara dengan 1,98 ton biji kopi/ha dengan jumlah populasi 714 tanaman. Varietas ini memiliki ketahanan terhadap penyakit karat daun dan hama penggerek buah kopi. Sama halnya dengan varietas LIM 1, varietas LIM 2 juga adaptif di lahan sup optimal (gambut) dengan tipe iklim A.
Nilai citarasa dari varietas kopi LIM 2 mencapai 84,50 sehingga dapat dikategorikan memiliki mutu “excellent”.

Gambar 16. Penampilan Varietas Unggul Kopi LIM 2

3) **Tembakau Prancak S1 Agribun**

Produksi per ha 0.781 ton kadar nikotin 2.4. moderat tahan terhadap *Ralstoniasolanacearum* sangat rentan terhadap *Phytophthoranicotianae* mempunyai kesesuaian dengan daerah lahan sawah di Madura.

4) **Tembakau Prancak S2 Agribun**

Produksi per ha 0.663 ton kadar nikotin 2.6 moderat tahan terhadap *Ralstoniasolanacearum* sangat rentan terhadap *Phytophthoranicotianae* mempunyai kesesuaian dengan daerah lahan sawah di Madura.

5) **Tembakau Prancak T1 Agribun**

Produksi per ha 0.692 ton kadar nikotin 2.6 moderat tahan terhadap *Ralstoniasolanacearum* sangat rentan terhadap *Phytophthoranicotianae* mempunyai kesesuaian dengan daerah lahan tegal di Madura.
6) Tembakau Prancak T1 Agribun
Produksi per ha 0.687 ton kadar nikotin 2.2 sangat rentan terhadap Ralstoniasolanacearum dan Phytopthoranicotianae mempunyai kesesuaian dengan daerah lahan tegal di Madura.

7) Lada Varietas Malonan 1
Varietas ini dilepas Balittro bekerja sama pemerintah daerah di Kalimantan Timur melalui SK. Menteri Pertanian: 448/Kpts/KB.120/7/2015. Keunggulan varietas ini adalah produksi tinggi, berbuah sepanjang tahun, potensi produksi 2,17 ton/ha lada putih, ukuran buah besar, umur masak buah 8 bulan, relatif toleran terhadap busuk pangkal batang. Jumlah bulir/malai 40,8 ±9,81 jumlah malai/cabang produksi 12,2 ±5,54 panjang malai 8,6±1,53 rata-rata produksi buah 2,94 kg/pohon rata-rata produksi lada putih 0,57 kg/pohon, dan estimasi produksi lada putih 2,17 ton/ha.

8) Lada Varietas Ciinten
Varietas Ciinten berasal dari Sukabumi. Rerata produksi buah segar per pohon lada varietas Ciinten 5,70 kg/pohon dan menghasilkan lada putih 1,95 kg dan lada hitam 2,57 kg/pohon. Mutu lada varietas ini lebih baik dari varietas pembanding Petaling 1, baik pada kadar minyak atsiri, oleorsin maupun piperin. Kadar minyak atsiri lada varietas Ciinten yang diproses menjadi lada putih 2,62%, lada hitam 2,93%, kadar oleoresin lada putih 12,14%, lada hitam
13,59%, dan kadar piperin lada putih 3,85%, dan lada hitam 4,29%. Sedangkan pada Petaling 1, kadar minyak atsiri 2,79%, oleoresin 8,06% dan piperin 3,19% (lada putih) dan untuk lada hitam kadar minyak atsiri 2,83%, oleoresin 13,55% dan piperin 4,17%. Kadar minyak atsiri dan piperin varietas Ciinten memenuhi standar mutu SNI, ASTA, ESA, IPC dan ISO. Varietas ini menunjukkan karakteristik morfologi yang berbeda dari varietas unggul lada yang sudah dilepas, pada panjang malai, jumlah buah per malai, bobot malai, ersentase buah sempurna dan ukuran buah serta biji. Jumlah buah per malai dan persentase buah sempurna yang tinggi, menjadikan lada vareitas ini lebih efisien dalam biaya panen. Untuk mendapatkan satuan berat yang sama pada lada ini memerlukan jumlah malai yang dipetik hanya 1/3 kali sampai ½ kali dari jumlah malai yang harus dipetik pada varietas Petaling 1. Hasil uji ketahanan terhadap penyakit BPB secara in vitro menunjukkan intensitas serangan < 5 %, setara dengan Natar 1 dan Petaling 2 (varietas unggul moderat tahan), sehingga lada varietas Ciinten dikategorikan moderat tahan.

9) Seraiwangi Varietas Sitrona 1 Agribun

Varietas ini dihasilkan dari pengujian 9 nomor harapan seraiwangi di 3 agroekologi selama dua tahun. Seraiwangi di panen pada umur 6 bulan pada panen pertama, selanjutnya setiap 3 bulan. Varietas ini menunjukkan produksi daun basah dan daun kering angin, produksi minyak, kadar sitronella dan kadar geraniol yang stabil, yang rata-rata di atas rata-rata umum dan mampu beradaptasi pada semua lingkungan. Keunggulan varietas Sitrona 1 Agribun yaitu produksi daun basah 7.791 g/rumpun/th, produksi daun kering angin 4.862 gram/rumpun/th, produksi minyak 506,93 kg/ha/th, kadar minyak 2.15%, kadar Sitronela 54.54%, Geraniol 85.24%. Saran pengembangan pada dataran medium.

10) Seraiwangi Varietas Sitrona 2 Agribun

Varietas Sitrona 2 Agribun mempunyai keunggulan produksi daun basah 8.797 gram/rumpun/th, produksi daun kering angin 3.995 gram/rumpun/th, produksi minyak 508,94 kg/ha/th, kadar minyak 2.59%, kadar Sitronela 55.92 %, kadar Geraniol 89.91% berpotensi sebagai calon varietas unggul yang mempunyai daya hasil tinggi. Saran pengembangan pada dataran medium dan kondisi iklim seperti di Kabupaten Purwakarta. Varietas seraiwangi ini mulai dikembangkan di Kalimantan dan Sumbawa Barat.
Gambar 17. Bentuk tajuk dan batang seraiwangi Sitrona 1 Agribun, Sitrona 2 Agribun, dan seraiwangi 1

11) Kelapa

Pencapaian indikator keempat yang dihasilkan melalui kegiatan litbang peternakan yaitu telah dihasilkan 26 (100%) galur harapan ternak dan tanaman pakan ternak. Rumpun/galur harapan tersebut terdiri dari 4 galur ayam (Sensi-AB dan PT, Gasi-G1, KUB-G1 dan KUB KK), 2 galur itik (itik Alabio F1 dan Itik Mojosari F1), 4 galur domba (Komposit Garut, Barbados Cross, Komposit Sumatera dan domba St. Croix), 4 galur Kelinci (Hycola, Hyla, NZW, FZ-3), 4 galur TPT (Clitoria ternatea M1, Pueraia javanica, Lab-lab purpureus, Paspalum atratum), 1 galur sapi F1 Silangan Sapi PO dan Bali serta 6 galur kambing
(Kambing Sapera, Kambing Perah Sintetis F1 dan F2, Kambing Boerka F1, F2,F3; Kambing Boerawa F1, F2 dan kambing Boer Indonesia) serta populasi dasar entog.

Pencapaian *indikator kelima* yaitu telah dihasilkan 28 galur harapan unggul tanaman dari target 18 galur, dengan demikian capaian indikator ini sebesar 155,56 %. Pencapaian indikator kinerja kegiatan ini dapat digambarkan sebagai berikut:

Capaian sasaran galur harapan unggul tanaman sebagai berikut:

<table>
<thead>
<tr>
<th>No.</th>
<th>Indikator Kegiatan</th>
<th>Target</th>
<th>Realisasi</th>
<th>Capaian (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Jumlah galur homozigot M7 asal iradiasi benih galur F8 hasil persilangan kedelai Cina (Tiongkok) x kedelai Jepang</td>
<td>5 galur</td>
<td>10 galur</td>
<td>200</td>
</tr>
<tr>
<td>2.</td>
<td>Jumlah galur somaklonal MV5 pisang Ambon Kuning tahan penyakit layu Fusarium</td>
<td>3 galur</td>
<td>2 galur</td>
<td>66,67</td>
</tr>
<tr>
<td>3.</td>
<td>Jumlah galur tomat transgenik BC3F1-1C dan F4-1C hasil persilangan ganda yang masing-masing berlatar genetic varietas Intan dan Varietas CL6046</td>
<td>2 galur</td>
<td>2 galur</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>Jumlah galur transforman T2 padi Nipponbare yang positif mengandung gen CsNitr1-L, homozigot dan single</td>
<td>2 galur</td>
<td>2 galur</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>Jumlah galur padi produktivitas tinggi BC1F4, BC1F5, BC2F3, BC2F4, BC3F2 dan BC3F3 turunan Code dan NIL-QTL hasil ((IR64-NILs-qTSN4[YP9]) dan IR64-NILs-qDTH8[YP1]) yang berasal dari tanaman terbaik berdasarkan hasil analisis molekuler dan pengamatan karakter agronomis</td>
<td>2 galur</td>
<td>2 galur</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>Jumlah galur padi BC3F1 yang mengandung tiga gen ketahanan (xa5, xa7 dan xa21) terhadap hawar daun bakteri (HDB) berdasarkan seleksi marka molekuler foreground dan background</td>
<td>2 galur</td>
<td>2 galur</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>Jumlah galur padi generasi BC3F2 yang mengandung alel gen Boh6 yang tahan terhadap wereng batang coklat berbasis marker assisted back crossing (MABC)</td>
<td>1 galur</td>
<td>1 galur</td>
<td>100</td>
</tr>
<tr>
<td>8.</td>
<td>Jumlah benih BC3F1 dan BC3F2 Dodokan-Pup1/Alt, Situ Bagendit-Pup1/Alt, dan Batur-Pup1/Alt hasil seleksi molekuler untuk sifat toleransi padi terhadap kahat fosfor dan keracunan alunium</td>
<td>7 galur</td>
<td>2 galur</td>
<td>100</td>
</tr>
</tbody>
</table>

Total capaian 18 28 155,56
Perbandingan capaian indikator kinerja sasaran pertama: terciptanya varietas unggul, galur/klon

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jumlah varietas unggul baru tanaman pangan</td>
<td>Target</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>28</td>
<td>20</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>2. Jumlah varietas unggul baru tanaman hortikultura (tanaman sayuran, buah tropika dan sub tropika, jeruk serta sub tropika, dan hias)</td>
<td>Target</td>
<td>19</td>
<td>25</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>40</td>
<td>27</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>3. Tersedianya varietas unggul tanaman perkebunan yang berdaya saing</td>
<td>Target</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>4. Jumlah varietas unggul baru/galur harapan ternak dan tanaman pakan ternak</td>
<td>Target</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td>14</td>
<td>15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>5. Jumlah galur harapan unggul tanaman</td>
<td>Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Realisasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Untuk mencapai indikator kedua, diukur dengan 9 (sembilan) indikator kinerja. Adapun pencapaian target dari masing-masing indikator kinerja dapat digambarkan sebagai berikut:

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jumlah teknologi berbasis bioteknologi dan bioprospeksi (teknologi)</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>2. Jumlah teknologi pascapanen (penanganan dan pengolahan (teknologi)</td>
<td>16</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>3. Jumlah teknologi pengelolaan lahan, air, iklim, dan lingkungan pertanian mendukung sistem pertanian bioindustri (teknologi)</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>4. Jumlah Model Pengembangan Inovasi Teknologi Petanian Bioindustri (teknologi)</td>
<td>66</td>
<td>66</td>
<td>100</td>
</tr>
<tr>
<td>5. Jumlah Teknologi Mekanisasi Pertanian untuk Peningkatan Produktivitas dan Efisiensi Produksi Komoditas Prioritas (teknologi)</td>
<td>8</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>6. Jumlah Teknologi Budidaya, Panen dan Pascapanen Primer Tanaman Pangan (teknologi)</td>
<td>17</td>
<td>21</td>
<td>123,5</td>
</tr>
<tr>
<td>7. Jumlah Teknologi Hortikultura Berbasis Pertanian Bioindustri (teknologi)</td>
<td>20</td>
<td>21</td>
<td>105</td>
</tr>
<tr>
<td>8. Jumlah Teknologi Budidaya Tanaman Perkebunan (teknologi)</td>
<td>23</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>9. Jumlah Teknologi Dan Inovasi Peningkatan Produksi Pertanian (teknologi)</td>
<td>44</td>
<td>47</td>
<td>106,8</td>
</tr>
<tr>
<td>Total</td>
<td>223</td>
<td>231</td>
<td>106,6</td>
</tr>
</tbody>
</table>

Berdasarkan indikator kinerja kedua yang telah ditarik pada Tahun 2015, dari 9 indikator kinerja, 6 indikator mencapai target 100% sedangkan 3 indikator lainnya melebihi target (sangat berhasil).

Pencapaian *indikator pertama* yaitu perakit teknologi berbasis bioteknologi dan bioprospeksi memiliki 4 sasaran utama, yaitu 1) Jumlah teknologi peta genetik dan analisis genom (sidik jari); 2) jumlah teknologi kloning gen; 3) jumlah teknologi bioprospeksi; dan 4) jumlah teknologi kultur in vitro. Dari indikator tersebut telah dihasilkan 5 teknologi yaitu : teknologi peta genetik,
teknologi analisis genom, teknologi konstruksi (kloning gen), teknologi bioprospeksi, teknologi in vitro. Dengan demikian indikator tersebut sudah mencapai 100 % dari target 5 teknologi.

Pencapaian **indikator kedua** sebanyak 16 teknologi dari target 16 teknologi pascapanen (Penanganan dan Pengolahan), atau tercapai 100%. Secara lengkap output 16 (enam belas) teknologi yang dihasilkan adalah sebagai berikut :

1. Teknologi produksi gula cair dari sorgum manis skala pilot (50 liter);
2. Teknologi produksi gula cair dari pati biji sorgum manis skala pilot (50 liter);
3. Teknologi fermentasi untuk peningkatan *flavour* kakao;
4. Teknologi pengolahan kakao (bubuk dan cokelat bar);
5. Teknologi produksi starter siap pakai *yoghurt* probiotik;
6. Teknologi produksi *yoghurt powder* probiotik diperkaya nano vitamin A;
7. Teknologi pengolahan pisang *off grade*;
8. Teknologi penanganan segar rambutan untuk ekspor;
9. Teknologi produksi biokomposit dari pati termoplastis untuk kemasan ramah lingkungan;
10. Teknologi produksi *biofoam* dari biomassa pertanian untuk kemasan ramah lingkungan;
11. Pupuk majemuk berbasis nano untuk tanaman padi;
12. Nano-silika dari limbah sekam padi untuk aplikasi pada industri pangan;
13. *Premix* nano-nutrien dan nano-bioselulosa dari air kelapa untuk fortifikasi pada aneka pangan;
14. Teknologi pengolahan beras indeks glikemik rendah (IGR) organik;
15. Teknologi pengolahan beras berkualitas (beras premium) dan pengolahan limbahnya (minyak dedak);
16. Teknologi produksi bioetanol dari limbah tongkol jagung pada skala pilot (200 liter).
Pencapaian **indikator ketiga** sebanyak 24 teknologi dari target 24 teknologi (100%) pengelolaan lahan, air, iklim, dan lingkungan pertanian mendukung sistem pertanian bioindustri. Secara rinci ke-24 teknologi tersebut beserta manfaat/kegunaannya dapat dilihat sebagai berikut.

2. Teknologi pengelolaan status karbon organik tanah untuk meningkatkan daya adaptasi terhadap perubahan iklim pada tanaman kedelai. Mempertahankan sifat fisik dan kimia tanah, mengurangi terjadinya degradasi lahan serta mitigasi GRK.

3. Teknologi konservasi tanah dan air untuk tanaman cabai di dataran tinggi. Teknik konservasi tanah dan air dapat meningkatkan tingkat penurunan erosi tanah.

4. Teknologi rehabilitasi lahan. Teknologi rehabilitasi lahan bekas tambang yang berupa pengelolaan bahan organik seperti penggunaan pemberian tanaman cabai, kompos insitu, pupuk kandang dan penanaman mukuna
sebagai sumber bahan organik tanah adalah komponen teknologi yang mampu meningkatkan kualitas lahan bekas tambang batubara.

5. Teknologi pemulihan kualitas lahan sawah terdegradasi akibat intrusi air laut. Pemulihan lahan usahatani padi pada lahan sawah tercemar natrium dari air laut adalah menurunkan daya hantar listrik dengan cara menurunkan kejenuhan natrium sampai < 1000 mg/kg.

6. Teknologi pengelolaan sawah bukaan baru. Pengelolaan air terbaik dengan sistem intermeten 1 minggu basah - 1 minggu kering. Pengelolaan hara terbaik dengan cara pemberian pupuk NPK sampai dosis rekomendasi berdasarkan analisis PUTS yang dikombinasikan dengan jerami 2 t/ha.

7. Teknologi pemanfaatan potensi sumberdaya air untuk pengembangan food smart village. Menyediakan teknologi pengelolaan air dan iklim bagi petani untuk dalam hal pemanfaatan air dari jaringan irigasi yang ada untuk mengembangkan komoditas tanaman dengan tanaman yang lebih bervariasi (tanaman pangan, sayuran, buah) untuk meningkatkan produktivitas lahan kering.
8. Teknologi terobosan prediksi iklim dan perubahan iklim berdasarkan key area. Hasil identifikasi wilayah kunci (Key Area) menjadi dasar yang penting dalam penetapan teknologi adaptif dan permasalahan adopsinya dalam mengatasi risiko bencana terkait iklim serta langkah kebijakan inovasi teknologi maupun transfer teknologinya hingga tingkat petani.

Gambar 20. Rancang Bangun dan Instalasi Jaringan Irigasi

Gambar 21. Program Aplikasi Untuk Mendeteksi Struktur Keluaran Regresi Minitab

9. Teknologi nano hidrogel untuk efisiensi irigasi skala lapang. Terciptanya hydrogel berbasis teknologi nano dan sensor curah hujan diharapkan akan berdampak pada perubahan teknik bertani masyarakat sehingga mampu memanfaatkan sumber daya pertanian yang seminimal mungkin untuk meningkatkan produksi pertaniannya. Smart hydrogel yang mudah, murah dan ramah lingkungan akan mempermudah petani dalam mengimplementasikan paket teknologi efisiensi irigasi, sehingga dengan tambahan satu teknologi, petani mampu meningkatkan jaminan keberhasilan panen.

10. Teknologi pemanfaatan energi surya untuk irigasi. Pompa air tenaga surya dapat dikembangkan di wilayah yang memiliki energi surya berlimpah dengan sumber air terbatas. Air yang ditampung dapat digunakan sebagai sumber air suplementer untuk memasok kebutuhan air pada saat defisit. Sehingga pompa air ini dapat menghemat energi dan ramah lingkungan, penggunaannya mudah, efisiensi tinggi, kinerja stabil dan dapat digunakan dalam jangka waktu lama, sehingga pompa energi matahari lebih tepat guna, efisien, dan ekonomisdengan biaya operasi dan pemeliharaan (OP) yang lebih sedikit, dan tidak membebani petani dalam melakukan kegiatan usaha taninya.

Gambar 23. Pemanfataan pompa air tenaga surya untuk irigasi di Desa Sriharjo, Kecamatan Imogiri, Kabupaten Bantul, Daerah Istimewa Yogyakarta
11. Teknologi sensor iklim untuk pertanian presisi. Penerapan pertanian presisi melalui aplikasi sensor klimatologi, diharapkan mampu meningkatkan efisiensi dan efektifitas penggunaan sumber daya pertanian, yang pada akhirnya mendorong peningkatan produksi dengan menggunakan biaya yang seminimal mungkin.

Gambar 24. Alat Pengukuran curah hujan

12. Teknologi monitoring online dinamika ketersediaan air petak tersier. Alat pantau otomatis dinamika ketersediaan air yang dapat diakses secara online diharapkan dapat memberikan informasi dengan tepat, cepat, dan akurat tentang ketersediaan air pada daerah irigasi sehingga ketersediaan air dapat dipantau tidak berlebih dan tidak kurang dalam memenuhi kebutuhan air tanaman.

Gambar 25. Bagan alat pantau otomatis

Gambar 26. Alat AWS

Gambar 27. Desain pengukuran air DAS Pusur dan Pengambilan data
15. Teknologi remediasi residu pestisida di lahan pertanian. Teknologi remediasi bermanfaat untuk membantu pemerhati lingkungan atau pengambil kebijakan sektor terkait untuk menurunkan kontaminan atau cemaran residu pestisida di lahan pertanian, sehingga kualitas lingkungan meningkat, kesehatan manusia terjamin, dan produk pertanian Indonesia aman dikonsumsi dan bebas cemaran.

![Gambar 28. Teknologi Remediasi POPs](image1)

16. Foto teknologi remediasi logam berat. Teknologi remediasi logam berat di lahan pertanian. Teknologi remediasi logam berat ini diharapkan mampu menurunkan logam berat Hg dan As pada tanah tercemar dengan pemanfaatan mikroba toleran logam berat Hg dan As.

![Gambar 29. Teknologi Remediasi Logam Berat](image2)

Gambar 30. Pola Tanam Padi – Padi - Palawija

18. Teknologi/komponen teknologi remediasi untuk tanaman kedelai di lahan sulfat masam terdegradasi. Berguna dalam menurunkan aplikasi pupuk anorganik serta mampu meningkatkan produktivitas lahan dengan meningkatnya pH tanah.

22. Teknologi analisis terbaik dan status hara P dan K untuk tanaman jagung di tanah sulfat masam lahan rawa pasang surut tipe luapan C. Bermanfaat untuk mengetahui status hara P dan K pada tanah sulfat masam lahan
rawa pasang surut tipe luapan C. Sehingga memudahkan memperkirakan kebutuhan hara P dan K untuk pertanaman jagung.

24. Database dan sistem informasi pertanian lahan rawa di propinsi Papua Barat. Merupakan data hasil analisis fisika dan kimia tanah di lahan rawa Provinsi Papua Barat

Indikator keempat yang telah ditargetkan dalam tahun 2015 telah tercapai sebesar 100%, atau terealisasi 66 model dari target 66 model sehingga dikatakan berhasil.

Untuk mencapai **indikator kelima** diukur melalui pencapaian 2 indikator kinerja dengan target 8 teknologi meliputi (a) jumlah teknologi mekanisasi mendukung swasembada pangan berkelanjutan sebanyak 5 teknologi dan (b) jumlah teknologi mekanisasi mendukung program strategis Kementan sebanyak 3 teknologi. Dari indikator tersebut telah tercapai 8 teknologi (100%). Secara rinci teknologi tersebut adalah sebagai berikut:

Teknologi mekanisasi mendukung swasembada pangan berkelanjutan (5 teknologi)

1. **Rekayasa Alat Ukur Hara Tanah Lahan Sawah Portable Secara Kuantitatif**

Berbagai metode telah dikembangkan untuk menduga ketersediaan unsur hara tanah, salah satunya adalah dengan metode spektroskopi menggunakan *Near Infrared* (NIR). Penggunaan metode NIR pada alat ukur hara tanah telah dikembangkan untuk mendeteksi kandungan N tanah di lahan sawah (Angkat, 2011) dan di lahan kering (Shi et al., 2015). Tujuan kegiatan ini adalah (1) mengembangkan konsep rancang bangun prototipe alat ukur unsur hara tanah berbasis NIR untuk lahan sawah, (2) melakukan pabrikasi dan uji fungsional prototipe alat ukur unsur hara tanah, dan (3) melakukan uji dan evaluasi kinerja alat ukur unsur hara tanah di lapang di berbagai lokasi dengan kondisi lahan berbeda.
Gambar 31. Alat ukur hara tanah

2. Rekayasa Prototipe Mesin Panen Padi Tipe Mini Combine untuk Lahan Rawa

Kegiatan yang dilakukan meliputi (1) Identifikasi karakteristik tanaman padi dan sifat fisik tanah di lahan rawa; (2) Penyusunan konsep dan pengembangan disain mesin serta evaluasi disain; (3) Pembuatan gambar kerja detail, komponen dasar, pabrikasi dan pengujiannya; dan (4) Tahap pengujian meliputi evaluasi disain, uji verifikasi dan uji fungsional komponen, pengujian prototipe, pengolahan dan analisa data hasil pengujian. Hasil identifikasi dan survey lapang yang dilakukan pada lahan rawa baik di Pulau Jawa (Kab. Pandeglang, Propinsi Banten) maupun di Pulau Sumatera (Kab. Banyuasin, Propinsi Sumatera Selatan) memperlihatkan kedalaman foot singkage sampai dengan 30 cm dengan gaya tekan tanah 0,15 – 0,2 kg/cm².

Proses desain prototipe dan proses pabrikasi dilakukan masing-masing di Lab. Desain dan Lab. Rekayasa, BBP Mektan. Pengujian prototipe yang dilakukan di Kebun Percobaan Muara, Bogor, dengan pilihan kondisi sawah kedalaman foot singkage 5-30 cm dan daya sangga tanah 0.1 – 0.2 kg/ cm², telah menghasilkan kapasitas kerja 8,5 jam/ha. Spesifikasi prototipe mesin panen padi Mini Combine Harvester untuk lahan rawa adalah : panjang 3500 mm, lebar 1700 mm, tinggi 1800 mm, dan berat total 850 kg. Mesin ini memiliki bagian titik terendah (ground clearance) sebesar 200 mm dan gaya tekan ke tanah (ground pressure) sebesar 0,12 kg/cm². Prototipe mesin panen padi Mini Combine Harvester untuk lahan rawa ini telah di perkenalkan kepada Menteri Pertanian pada acara soft launching TTP/TSP di Cimanggu, Bogor.
Gambar 32. Prototipe Mesin Panen Padi *Mini Combine Harvester* untuk Lahan Rawa

3. Pengembangan Pemetaan Mekanisasi Produksi Padi, Jagung, dan Kedelai

Hasil kegiatan menunjukkan bahwa telah tersusun basis data alsintan yang meliputi: 1) data ketersediaan alsintan tingkat nasional yang meliputi traktor roda 2, traktor roda 4, pompa, *transplanter*, *reaper*, *paddy mower*, *power thresher*, *combine harvester*, *dryer* dan penggilingan padi; 2) data ketersediaan alsintan tingkat provinsi yang meliputi traktor roda 2, roda 4, pompa, *transplanter*, *power thresher*, *combine harvester*, *dryer* dan penggilingan padi; 3) data ketersediaan, tingkat kecukupan dan optimalisasi pemanfaatan traktor roda 2 dan *power thresher* untuk tingkat kabupaten dengan data yang diverifikasi di minimal 3 kabupaten di provinsi Banten, Jawa Barat, Jawa Tengah, DI Yogyakarta, Jawa Timur, Lampung, Sumatera Barat, Sumatera Selatan, Sumatera Utara, Aceh, Kalimantan Barat, Kalimantan Selatan, Kalimantan Tengah, Nusa Tenggara Barat, Tenggara Timur, Sulawesi Selatan, Sulawesi Tenggara dan Gorontalo. Database dan pemetaan tersebut di atas yang disusun sebagai sistem informasi mekanisasi pertanian dapat mudah diakses melalui website http://katam.litbang.pertanian.go.id/
4. Pengembangan Paket Teknologi Mekanisasi Budidaya dan Pasca Panen Jagung dan Kedelai

Penelitian ini bertujuan untuk mengembangkan paket mesin budidaya dan pascapanen jagung dan kedelai yang tepat guna dan sesuai dengan kondisi spesifik lokasi dengan memperhatikan aspek teknis, ekonomis, dan kondisi spesifik lokasi. Paket mesin budidaya dan pascapanen jagung yang dikembangkan terdiri dari mesin penanam jagung tipe RIS (*Rolling Injection Seeder*), mesin penyiang, mesin pemipil jagung berkelobot, dan mesin pengerger. Sedangkan paket mesin budidaya dan pascapanen kedelai terdiri dari mesin penanam kedelai tipe RIS, mesin penyiang, mesin perontok kedelai, dan mesin pengerger kedelai. Paket mesin tersebut telah diuji kinerjanya di kebun.

Gambar 35. Paket mesin budidaya dan pascapanen jagung yang terdiri dari mesin penanam, penyiang, pemipil dan pengering tipe bad

Gambar 36. Paket mesin budidaya dan pascapanen kedelai yang terdiri dari mesin penanam, mesin penyiang, perontok dan pengering
5. Rekayasa dan Pengembangan Komponen Dasar Prototipe Indo Combine Harvester dan Indo Jarwo Transplanter

Tujuan dari kegiatan ini adalah menghasilkan komponen dasar prototipe Indo Jarwo Transplanter dan Indo Combine Harvester, yang terdiri atas: (1) Mold prototipe *plastic injection* papan bibit (*tray*) Indo Jarwo Transplanter (IJT), (2) *Blanking dies* pemegang dan penyetel pelampung IJT, (3) *U-bending dies* pemegang dan penyetel pelampung IJT, (4) Mold prototipe blok transmisi *planting arm* IJT, (5) Mold prototipe *rubber partial track shoes* MICO Harvester, (6) Standard manufaktur *self reversing screw* (*double screw*), (7) Komponen-komponen IJT (poros transmisi planting arm, casing *gearbox planting*, pen screw, poros pengungkit penurun bibit, unit pemegang dan penyetel pelampung, *extension shaft* roda, *neck hub connector*), (8) Komponen-komponen MICO Harvester (*driving wheel* roda bintang, roda penegang *track shoes*), dan (9) Model 3d printer (*planting arm, guide seeds, cutter bar*).

Gambar 37. Mold prototipe *plastic injection* papan bibit (*tray*) Indo Jarwo Transplanter (IJT)

Gambar 38. Blanking dies pemegang dan penyetel pelampung IJT
Gambar 39. U-bending dies pemegang dan penyetel pelampung IJT

Teknologi mekanisasi mendukung program strategis Kementan (3 teknologi)

1. Pengembangan Mesin Panen Tebu Juring Ganda di Lahan Kering

Hasil penelitian menunjukkan bahwa sampai akhir Tahun 2015, pengembangan mesin panen tebu telah dirancang dan dibuat prototipenya. Pengembangan meliputi penggantian sistem transmisi rantai menjadi sistem hidrolik untuk menggerakkan unit konveyor dan unit pisau pemoten. Engine penggeraknya digunakan engine diesel 72 Hp, dimana pada prototipe sebelumnya hanya 8,5 Hp. Mesin panen tebu ini terdiri dari beberapa bagian utama, yaitu: (1) engine penggerak, (2) rangka utama, (3) rangka implement, (4) pisau pemotong, (5)konveyor pengarah, (6) konveyor pembawa, (7) roda penggerak dan (8) ruang kabin dan sistem kemudi. Mesin ini memiliki bobot 2,5 ton dengan dimensi (p x l x t) adalah 5820 x 2500 x 2350 mm. Kapasitas kerja dirancang 0,25 ha/jam.
2. Rekayasa Alat Core Sampler Tebu Siap Giling

Hasil kegiatan menunjukan bahwa rancang bangun mesin *bore core sampler* tebu telah selesai dilaksanakan. Hasil uji fungsional *bore core sampler* menunjukkan perlu adanya beberapa modifikasi, yaitu: *setting* dudukan *bore core sampler* dan injektor hidrolik harus lebih presisi untuk mengurangi gesekan pada saat pergerakan maju dan mundur *bore core sampler*, desain dan bahan pisau pemotong perlu disesuaikan dengan karakteristik tebu, dan penggantian komponen sistem hidrolik dengan daya yang lebih tinggi.

![Gambar 41. Bore Core Sampler dan Spesifikasi Teknis Hasil Kegiatan](image)

3. Rekayasa dan Pengembangan Pompa Air Tenaga Surya untuk Budidaya Bawang Merah

Perancangan sistem irigasi pada lahan kering untuk budidayan tanaman bawang merah menggunakan pompa air tenaga surya telah berhasil dirancang. Dengan menggunakan pompa air tenaga surya bagi penyediaan air dapat memenuhi kebutuhan air untuk tanaman bawang merah seluas 840 m² yang dibagi menjadi 12 bedengan. Jaringan irigasi yang dirancang menggunakan irigasi springkler, dengan 7 saluran lateral yang setiap saluran lateral terdapat 7 springkler untuk menyirami 2 bedengan tanaman (kiri-kanan). Karena pendistribusian air dari tangki ke tanaman (2 bedengan per saluran lateral) bertekanan rendah sehingga jangkauan siraman kurang menjangkau seluruh tanaman maka digunakan bantuan pompa air jenis booster yang tenaga penggeraknya juga menggunakan tenaga surya. Penyiraman tanaman masih dilakukan secara manual dimana secara bergiliran setiap jaringan per lateral dihidupkan dalam waktu tertentu. Berdasarkan investasinya, biaya pokok dari pengaplikasian pompa air tenaga surya ini menghasilkan air masih terbilang mahal, yaitu sebesar Rp. 7.654,- per m³, sementara menggunakan listrik sebesar Rp. 2.167,- dan menggunakan
bahan bakar fosil sebesar Rp. 1.723,-. Dari pengaplikasian teknologi ini walaupun musim kemarau yang panjang dan sangat kritis, hasil tanaman bawang merah dapat mencapai 3,5 ton per Ha.

Gambar 42. Rekayasa dan Pengembangan Pompa Air Tenaga Surya untuk Budidaya Bawang Merah
Pencapaian pencapaian indikator keenam adalah tersedianya Teknologi Budi Daya, Panen dan Pascapanen Primer Tanaman Pangan. Indikator tersebut telah tercapai 21 teknologi (123,52%) dari target yang telah ditetapkan 17 teknologi.

Keluaran yang dicapai dari perakitan teknologi budi daya dan panen tanaman pangan diuraikan sebagai berikut:

1. Teknologi Peningkatan Produksi Padi Berbasis Tata Kelola Lahan dan Tanaman yang Ramah Lingkungan Dengan Input Produksi (Pupuk) yang Optimal (PHSL)

PHSL adalah pendekatan atau cara dalam menetapkan jenis dan dosis pupuk berdasarkan status kesuburan tanah dan kebutuhan hara tanaman. Teknologi ini ditujukan untuk para penyuluh pertanian dan teknisi BPTP yang kantornya dilengkapi dengan fasilitas komputer dan internet.

2. Peningkatan Produktivitas Tanaman Padi Melalui Perbaikan Sistem Tanam

3. Teknologi Tata Kelola Air Mikro Spesifik di Lahan Rawa

Pengelolahan tata air mikro merupakan faktor penting untuk memperbaiki kondisi tanah dan meningkatkan produktivitas lahan rawa. Hasil penelitian pola aliran satu arah (one follow system) dengan menentukan secara terpisah antara saluran masuk dan keluar diperoleh hasil padi lebih tinggi dibandingkan dengan aliran dua arah. Teknologi tata air mikro padi rawa pasang surut yang sinergis
4. **Pengendalian Penyakit Blas di Lahan Rawa Lebak**

Pengendalian penyakit blas mempunyai peluang keberhasilan tinggi bila waktu aplikasi dengan fungisida didasarkan pada fase kritis tanaman padi atau disesuaikan dengan saat populasi spora di udara tinggi. Populasi spora di udara berkaitan erat dengan perkembangan penyakit di pertanaman. Pengendalian penyakit blas dapat lebih efektif bila waktu aplikasi fungisida disesuaikan dengan saat kondisi populasi inokulum awal (tangkapan spora) tinggi. Waktu aplikasi fungisida pada umur tanaman yang bertepatan dengan stadium kritis karena populasi spora tinggi.

Anjuran pengendalian penyakit blas di lahan rawa lebak dengan melakukan: (a) Sanitasi lingkungan sawah untuk menjaga kebersihan sawah dari gulma yang mungkin menjadi inang alternatif dan membersihkan sisa-sisa tanaman yang terinfeksi, karena patogen dapat bertahan pada inang alternatif dan sisa-sisa tanaman, (b) Penggunaan varietas tahan, (c) Penggunaan benih sehat, dan (d) Penyemprotan fungisida. Bila penyemprotan 2 kali dianjurkan pada 55 dan 75 HST, dan bila 3 kali dianjurkan pada 35, 55, dan 75 HST.

5. **Pengendalian Gulma Padi Gogo di bawah Tegakan Tanaman Perkebunan/ Hutan Tanaman Industri Muda**

Gulma telah menjadi persoalan serius dan harus segera dikendalikan terutama pada usahatani tanaman pangan di lahan kering seperti padi gogo. Jenis dan macam gulma sangat beragam bahkan saat tumbuh mempunyai kemiripan satu dengan yang lainnya walaupun berbeda spesiesnya. Oleh karena itu diperlukan pengetahuan praktis tentang cara-cara mengelola persoalan gulma yang tumbuh tanpa dikehendaki dan bagaimana cara mengatasinya.
6. Teknologi Penggilingan Padi

Teknologi penggilingan padi dapat memperbaiki penerimaan masyarakat akan beras, yaitu mengubah gabah menjadi beras putih. Masyarakat pada umumnya sudah terbiasa atau menyukai beras berwarna putih (beras sosoh sempurna). Susut pada tahapan penggilingan umumnya disebabkan oleh penyetelan blower penghisap, penghembus sekam dan bekatul. Penyetelan yang tidak tepat dapat menyebabkan banyak gabah yang terlempar ikut ke dalam sekam atau beras yang terbawa ke dalam dedak. Hal ini bias mengakibatkan rendemen giling rendah. Hasil penelitian menunjukkan bahwa susut pascapanen pada tahapan penggilingan di agroekosistem padi lahan irigasi sebesar 2,16%, pada agroekosistem padi lahan tadah hujan sebesar 2,35% dan pada agroekosistem padi lahan pasang surut sebesar 2,60%. Upaya peningkatan produksi padi sangat bergantung pada ketersediaan teknologi dan adopsi teknologi oleh petani di lapang. Teknologi yang telah dihasilkan BB Padi akan diterapkan melalui display/demplot dalam SL-PTT tahun 2015 di seluruh BPTP sebagai komponen teknologi PTT yang spesifik lokasi.

7. Pengendalian Terpadu Bio-Intensif Penyakit Tungro

8. Pengelolaan Pestisida dalam Pengendalian Tungro

Gambar 44. Kegiatan uji resistensi koloni wereng hijau terhadap empat golongan bahan aktif pestisida dan kegiatan pengelolaan aplikasi pestisida dalam pengendalian tungro

Aplikasi insektisida karbofuran maupun thiametoksam pada persemaian yang diikuti dengan aplikasi saat di pertanaman secara tidak langsung menyebabkan kejadian tungro cenderung lebih rendah sehingga mempengaruhi infeksi sekunder penularan tungro pada minggu-minggu berikutnya yang cenderung lebih rendah pula, meskipun tidak berbeda nyata dengan tanpa aplikasi di pertanaman.

9. Pengendalian Tungro Berdasarkan Virulensi dan Patogenisitas Virus Tungro di Daerah Endemis

Penelitian dilaksanakan dengan mengambil sumber inokulum dan vektor dari penyakit tungro pada tiga lokasi sebaran yaitu Jawa Timur, Lampung, dan Bengkulu dengan menggunakan delapan varietas yang telah diketahui tahan tungro dan varietas yang tidak memiliki gen ketahanan, kemudian dilakukan inokulasi sehingga dapat diketahui kesesuaian varietas dengan tungro yang endemik di daerah tersebut.
Hasil penelitian menunjukkan dari beberapa varietas yang diujikan, dari ketiga lokasi isolat menunjukkan hasil yang beragam. Isolat virus tungro Jawa Timur menunjukkan hampir seluruh varietas yang diuji menunjukkan gejala tungro, berbeda dengan kedua isolat virus yang lain, ekspresi virus tungro hanya terlihat pada varietas pembanding (TN1) dan beberapa varietas uji. Pengamatan tingkat keparahan (DI) yang ditunjukkan oleh varietas uji berupa perubahan warna daun dari hijau menjadi kekuningan serta penurunan tinggi tanaman dibandingkan tanaman kontrol. Skor gejala per individu tanaman sebagian besar skor 3 dan 5 dan beberapa dengan skor 7.

10. Teknologi Pengendalian Penyakit Kedelai dengan Biofungisida

Biofungisida BACTAG mengandung bahan aktif dari bakteri Pseudomonas fluorescens yang diformulasikan ke dalam bentuk cair menggunakan air steril berisi nutrisi air kelapa atau formula berupa bentuk pellet mengandung biakan koloni bakteri dengan serbuk talk dan OMC. Produk BACTAG dicampur dengan benih kedelai sebelum tanah dengan dosis 1 g produk BACTAG dicampur dengan benih 1 Kg benih. Biofungisida BACTAG efektif untuk mengendalikan penyakit tular tanah yang disebabkan oleh cendawan Rhizoctonia solani, Sclerotium rolfsii, dan Fusarium sp. yang menyerang tanaman kedelai pada kondisi kelembaban tinggi. BACTAG juga efektif untuk mengendalikan penyakit tular tanah pada tanaman aneka kacang. Pemanfaatan biofungisida BACTAG mampu menggantikan efikasi fungisida kimia hingga 100%.

11. Teknologi Pengendalian Hama Kedelai dengan Bioinsektisida

SBM merupakan bioinsektisida kimia yang berasal dari serbuk biji mimba (Azadirachta indica) efektif mengendalikan berbagai jenis hama antara lain; penggerek polong kacang hijau Maruca testulalis, hama Trhips (Megalurothrips sjostedti), pengisap polong (Clavirgralla spp., Aspavia armigera, Riptortus dentipes). SBM berasal dari serbuk biji mimba, cara aplikasi yaitu mencampur SBM ke dalam air dan direndam selama 48 jam agar kandungan senyawa bioinsektisidalnya terekpose sehingga akan lebih efektif dalam membunuh serangga hama sasaran. Bioinsektisida SBM sangat efektif untuk membunuh berbagai jenis hama terutama hama pemakan daun maupun pengisap polong dan mampu menggantikan insektisida kimia.
12. **Teknologi Budi Daya Kedelai Lahan Pasang Surut Tipe Luapan C**

Lahan pasang surut merupakan prospek peningkatan produksi kedelai di lahan suboptimal yang sangat luas mencapai 9,3 juta hektar. Paket teknologi ini sudah dilakukan kajian selama 4 tahun di Kalimantan Selatan pada musim MH2. Hasil produksi yang dicapai menggunakan paket teknologi ini mencapai 1,5-1,6 t/ha lebih tinggi produksi nasional di lahan optimal yaitu 1,4 t/ha dan jauh lebih tinggi dari produksi paket teknologi petani yaitu hanya 1,0 t/ha.

13. **Paket Budi Daya Kedelai untuk Lahan Sawah**

Paket budi daya lahan sawah yang tergolong jenis tanah Vertisol dilakukan pada musim MK2. Paket teknologi ini dikembangkan dengan membandingkan teknologi yang dilakukan oleh petani setempat. Penerapan paket teknologi alternatif I mampu memproduksi kedelai 1,78-2,23 t/ha; sedangkan paket alternatif II mampu memproduksi kedelai mencapai 2,30 t/ha. Sementara paket teknologi yang dilakukan petani setempat hanya 1,4 t/ha.

14. **Teknologi Budi Daya Kedelai untuk Lahan Kering Masam**

Lahan kering masam di Indonesia cukup luas yaitu mencapai 18,5 juta hektar dan belum dikelola secara maksimal. Paket teknologi untuk lahan kering masam dikaji di Kecamatan Bajuin, Kabupaten Tanah Laut (Kalimantan Selatan) pada musim MH2. Penerapan paket teknologi ini mampu menghasilkan produksi kedelai 2,14-2,16 t/ha jauh dibandingkan produksi nasional hanya 1,4 t/ha.

15. **Teknologi Budi Daya Ubijalar di Lahan Kering**

Produksi ubijalar di lahan kering mencapai 28 ton/ha dengan cara menanam varietas Ayamurasaki, menggunakan pupuk kandang 5 ton/ha, 100 Kg Urea, 100 Kg SP36, dan 100 Kg KCl.

16. **Teknologi Pemupukan Kacang Hijau di Lahan Kering Iklim Kering**

Teknologi pemupukan kacang hijau di lahan kering iklim kering dilakukan pada musim kemarau setelah tanaman jagung dengan komponen teknologi utama pemupukan 150 Kg Phonska/ha yang mampu menghasilkan 1,78 ton/ha.
17. **Benchmarking Teknologi Budi Daya Eksisting Kacang Tanah di Lahan Kering Iklim Kering**

Teknologi ini dilakukan kajian di 5 lokasi di Kabupaten di Sumba Timur dengan produksi rata-rata 1,0-1,2 t/ha. Kabupaten Sumba merupakan daerah kering sebagai salah satu sentra produksi kacang tanah di Indonesia Timur.

18. **Pemupukan Spesifik lokasi di Kabupaten Jeneponto dan Bantaeng**

Untuk memperoleh efisiensi pemupukan yang tinggi dan hasil optimal diperlukan pemupukan spesifik lokasi atau sesuai dengan agrokosistem lahan. Pemupukan sepesifik lokasi selain meningkatkan efisiensi pemupukan, produktivitas, dan pendapatan petani, juga dapat mempengaruhi keberlanjutan sistem produksi, kelestarian lingkungan, dan penghematan sumber daya energi.

19. **Kombinasi Biopestisida Formulasi B. subtilis dan Pestisida Nabati**

Biopestisida ini merupakan kombinasi antara formulasi B. subtilis dengan bahan nabati berupa ekstrak daun cengkeh, ekstrak daun sirih dan ekstrak rimpang kunyit. Kombinasi biopestisida ini memiliki potensi untuk dijadikan pestisida hayati untuk mengendalikan hawar pelepah jagung. Aplikasi biopestisida ini memperlihatkan bahwa insensitas serangan pada tanaman hanya 46%, tidak berbeda nyata dengan biopestisida tunggal B. subtilis tetapi berbeda sangat nyata dengan control.

20. **Teknologi Pembuatan Olahan Pangan Fungsional Berbasis Jagung Ungu**

Jagung ungu kaya akan komponen antosianin yang termasuk komponen flavonoid, karotenoid, antoxantin, β-sianin. Sebagai komponen pangan fungsional, antosianin mempunyai fungsi kesehatan sangat baik, antara lain sebagai antioksidan, antikanker, dapat mencegah penyakit jantung koroner. Secara kimia, antosianin merupakan turunan dari struktur aromatik yaitu sianidin yang terbentuk dari pigmen sianidin dengan penambahan atau pengurangan gugus hidroksil, metilasi atau glikosilasi.

21. **Teknologi Produksi Benih Jagung Komposit Kelas Benih Dasar**

Berdasarkan **indikator ketujuh** yaitu jumlah teknologi hortikultura berbasis pertanian bioindustri, capaian realisasi teknologi hortikultura pada tahun 2015
Pencapaian **indikator kedelapan** adalah 23 teknologi budidaya tanaman perkebunan dan telah terealisasi sebanyak 23 teknologi (tingkat keberhasilan 100%), teknologi tersebut sebagai berikut:

1. **Penetapan Rekomendasi Pemupukan Berbasis Analisis Tanah di Beberapa Lokasi Pengembangan Tebu**

Efisiensi pupuk NPK (berbasis status hara tanah) dan meningkatkan produktivitas dan rendemen. Peningkatan dosis pupuk nitrogen 0 menjadi 140 kg N/ha meningkatkan tinggi tanaman, jumlah ruas dan nilai angka brix, sedang peningkatan dosis pupuk P dari 0 menjadi 60 kg P₂O₅ dan peningkatan dosis pupuk kalium dari 0 menjadi 60 kg K₂O masing masing meningkatkan nilai angka brix. Dosis pupuk N cukup 140 kg N/ha menghasilkan tinggi tanaman tebu 362,01 cm, jumlah ruas 27,50, dan nilai brix 20,21. Dosis pupuk fosfat dan kalium menghasilkan nilai brix masing-masing 19,77 dan 20,89.

2. **Teknologi Pembuatan dan Pemanfaatan Biochar dari Serasah Tebu untuk Perbaikan Kualitas Lahan Berpasir**

Pemberian biochar 10 ton/ha dapat meningkatkan C-organik tanah dan kadar air tanah lahan berpasir.

3. **Penelitian Optimasi Pemupukan pada Sistem Juring Ganda untuk Meningkatkan Produktivitas dan Rendemen Tebu**

Dosis pemupukan 12 Phonska + 10 ZA kw/ha meningkatkan produksi 64,1% pada sistem juring ganda.

4. **Validasi Kesesuian Varietas Tebu dengan Tipologi Lahan di Jawa Timur**

Validasi kesesuaian tipologi lahan dengan tekstur berat (B) pada lahan tadah hujan (H) dan drainase lancar (L) dengan tipe kemasakan varietas tebu menunjukkan bahwa varietas tebu mulai tipe kemasakan awal sampai lambat dapat digunakan yang ditunjukkan dengan jumlah batang 12,30-12,94 batang/m juring dan tinggi tanaman 2,52-2,92 meter.
5. **Pengendalian Penyakit Utama pada Tanaman Tebu Ratton Cane (RC-1)**

Pada tanaman pertama (PC) diperoleh bahwa perlakuan bibit dengan air panas (HWT) meningkatkan kesehatan tanaman tebu. Intensitas penyakit pokkahboeng dan mosaik cenderung lebih rendah. Kombinasi HWT, chemoterapi, dan kultur jaringan dapat meningkatkan efektivitas mengeliminasi patogen. Sistem tanam juring ganda (50/175 cm) maupun tunggal tidak memberi pengaruh terhadap serangan penyakit.

6. **Pengendalian Hama Uret pada Tanaman Tebu**

Komponen teknologi pengendalian hama uret yang dinilai efektif yaitu penggunaan insektisida karbofuran 40 kg/ha dan Jamur *Metarhizium anisopliae* 50 kg/ha.

7. **Teknologi Juring Ganda dan Juring Tunggal Di Beberapa Kabupaten Di Indonesia**

Produktivitas tebu dipengaruhi oleh varietas yang digunakan, teknik budidaya yang diterapkan, dan lingkungan selama pertumbuhan tanaman tebu. Potensi varietas akan dapat dioptimalkan bila tebu dipelihara dengan baik mengikuti standar budidaya tebu, pada kondisi lingkungan yang sesuai.

Penerapan sistem tanam juring ganda di 15 lokasi penelitian (dari 28 lokasi yang diuji), dengan PKP (135 + 50) cm, dipadukan dengan teknik budidaya tebu yang baik meliputi penggunaan varietas-varietas unggul yang sesuai lokasi pengembangan, pemberian bahan organik berupa pupuk kandang sebanyak 3 – 5 ton/per hektar, ditambah pupuk an organic berupa pupuk NPK 800 – 1000 kg/ha, diikuti pemeliharaan intensif meliputi pengendalian gulma, pembumbunan, dan klenthek, dapat meningkatkan produktivitas tebu sebesar 4 – 38 % dibandingkan dengan menggunakan sistem tanam juring tunggal (PKP 135 cm). Lokasi-lokasi tersebut meliputi kabupaten Gorontalo, Blora, Langkat, Cirebon, Lampung, Pati (Tambaharjo), Majalengka, Lamongan, Pati (Jaken), Sidoarjo, Ogan Kemtering Ilir, Pasuruan, Klaten, Bantul, dan Deli Serdang.
8. Teknologi Pemupukan Organik dengan Pelarut P dan K pada Tanaman Kopi Robusta

Penggunaan pupuk buatan serta input lainnya secara besar-besaran menyebabkan dampak negatif berupa kerusakan ekosistem sehingga menurunkan kualitas tanah maupun tanaman. Tanah yang rendah tingkat kesuburannya dapat ditingkatkan dengan memanfaatkan kelompok mikrobia indigeneus pelarut fosfat melalui peningkatan kelarutan pupuk P yang diberikan maupun senyawa P yang tertinggal sebagai residu tanah. Mikroba pelarut P mampu berperan melepaskan ikatan P tersebut dan menyediakan bagi tanaman. MPF yang potensial memiliki kemampuan melarutkan unsur hara P antara lain Bacillus dan Aspergillus. Inokulasi MPF mampu meningkatkan berat biomass dan serapan hara N, P, dan K. Pemberian pupuk NPK dengan interval tiga kali dan mikroba sebanyak 20 gr/th dapat meningkatkan ketersediaan hara K dan Ca sebesar 25%.

Penggunaan pupuk hayati pelarut P dan K dan berbagai sumber bahan organic pada kopi asal setek berakar dapat mengurangi penggunaan pupuk kimia sebesar 25%.

9. Teknologi pengemasan dan penyimpanan entres kopi robusta untuk meningkatkan viabilitas benih

Lokasi sumber benih dengan tempat persewaan benih menjadi sebuah kendala pada penyediaan bahan tanam kopi robusta terutama dalam bentuk entres. Salah satu faktor pembatas keberhasilan distribusi entres kopi adalah tingkat kesegarannya. Semakin cepat entres mengalami penurunan kesegarannya maka akan semakin cepat entres tersebut kehilangan daya tumbuh. Hal ini dapat diatasi dengan mengemas entres dalam bahan pembungkus yang tepat agar kelembaban dan kesegaran entres kopi robusta dapat terjaga dengan baik. Fungsi pengemasan entres kopi selama distribusi adalah untuk melindungi entres kopi dari panas, sinar ultraviolet, benturan, maupun kontaminasi mikroba yang dapat merusak dan menurunkan mutu entres. Peningkatan lama simpan entres kopi tersebut akan membantu penyediaan entres untuk perbanyakan kopi robusta secara vegetatif, yaitu penyetekan dan penyambungan. Teknik pengemasan entres kopi rosbuta dengan menggunakan pengemas plastik+koran + superabsorbent polyacrylamide polymer mampu mempertahankan
viabilitas entres kopi robusta sebesar 75% walaupun telah melewati masa distribusi entres selama ± 10 hari pada suhu 35-40°C.

Gambar 45. Teknologi Pengemasan dan Penyimpanan Entres Kopi Robusta

10. Teknologi Percepatan Perbanyakan Kopi Robusta melalui Stek berakar

Modifikasi media tanam, persemaian dan zat pengatur tumbuh mampu mempercepat penyediaan bibit kopi asal stek berakar dari 6 bulan menjadi 4 bulan

11. Teknologi Fermentasi Biji Kakao Basah dengan Waktu yang Lebih Singkat

Salah satu upaya untuk mempercepat proses penguraian gula pada pulpa biji kakao pada proses fermentasi dapat dilakukan dengan menambahkan mikroba yang dapat membantu percepatan penguraian gula pada pulpa, salah satunya Rhizopus sp.. Penggunaan Rhizopus sp. sebanyak 1% dari berat biji kakao basah sebagai agens fermentasi dapat mempersingkat waktu fermentasi yang tadinya membutuhkan waktu selama 5-7 hari menjadi 3 hari. Selain itu penggunaan Rhizopus sp. ini lebih mudah dalam hal aplikasi serta mudah didapatkan.
12. Penerapan Teknologi Pengendalian Hama Utama Tanaman Kakao Ramah Lingkungan Menggunakan Pestisida Nabati dan Pestisida Hayati

Organisme Pengganggu Tanaman (OPT) kakao yang banyak ditemukan di sentra-sentra produksi kakao di Indonesia adalah hama Penggerek Buah Kakao (PBK) dan *Helopeltis sp.* Serta penyakit busuk buah kakao. Pengendalian yang dilakukan petani umumnya masih menggunakan pestisida kimiai yang seringkali mempunyai dampak negatif terhadap lingkungan dan kesehatan. Untuk itu perlu diupayakan satu cara pengendalian yang efektif dan aman terhadap lingkungan, yaitu menggunakan pestisida nabati dan pestisida hayati. Pengendalian hama utama kakao dengan penggunaan pestisida nabati dan pestisida hayati yang diaplikasikan dengan cara disemprotkan 2 minggu sekali dikombinasikan dengan pemangkasan tanaman kakao dan tanaman penang, pembuatan rorak diantara tanaman kakao dan pemupukan dengan pupuk kandang mampu menurunkan tingkat serangan kerusakan hama PBK dan *Helopeltis sp.* Pada buah kakao serta menghasilkan produksi buah yang diperoleh lebih banyak dibanding kontrol.

13. Teknologi Perbanyakan Kakao Melalui Induksi Embriogenesis Somatik Sekunder

Induksi embriogenesis somatik sekunder dimaksudkan untuk meningkatkan faktor multiplikasi, yang dilakukan menggunakan eksplan kotiledon dari embrio somatik primer. Hasil penelitian menunjukkan, perbanyakan melalui embrio somatik sekunder pada kakao dapat meningkatkan faktor multiplikasi sebesar 8 - 37 kali dibanding melalui embrio somatik primer, tergantung genotype.

Gambar 46. Pembentukan embrio somatik sekunder dari potongan kotiledon embrio somatik primer pada media yang mengandung BA (A) dan adenine (B)
Gambar 47. Perkecambahan embrio somatik sekunder (A), dan Planlet dengan daun yang mirip kotiledon (B)

Gambar 48. Tanaman kakao hasil perbanyakan melalui embriogenesis somatik

14. Percepatan Umur Produksi Tanaman Kemiri Sunan Melalui Teknik Penyambungan Tanaman Kemiri Sunan

Secara umum tanaman yang berasal dari biji tanpa disambung memiliki habitus yang tinggi dengan orientasi pertumbuhan tajuk ke atas, sedang tanaman hasil sambungan memiliki orientasi pertumbuhan tajuk melebar dengan tanaman yang lebih pendek sehingga memudahkan operasional panen. Selain itu tanaman hasil sambungan memiliki umur mulai produksi lebih cepat dibanding tanaman asal biji.

15. Teknologi Pengendalian Penyakit Busuk Pangkal Batang Lada dengan *Trichoderma* sp.*

Penyakit busuk pangkal batang merupakan penyakit utama pada tanaman lada. Penyakit ini dapat dikendalikan dengan menggunakan agensia hayati berbahan aktif *Trichoderma* sp. Agenesia hayati ini diformulasikan dalam bentuk cair dan powder yang diaplikasikan pada benih/bibit sebelum tanam, dan tanaman sesudah dilapang.
Pengamatan pada umur satu tahun aplikasi *Trichoderma* sp. dapat menekan kejadian penyakit lebih baik di bandingkan kontrol maupun perlakuan lainnya seperti *Pseudomonas* sp., dan mikoriza.

16. Teknologi Pengendalian Pengisap buah lada melalui Penggunaan pestisida nabati berbahan baku tanaman rempah dan obat.

Perlakuan minyak serai wangi konsentrasi 5 ml/l mampu mengendalikan *D. piperis* di lapang dengan rata-rata nilai efikasi sebesar 89,29%, tingkat serangan terendah, rata-rata kehilangan hasil panen terendah, dan hasil panen bersih tertinggi. Campuran minyak serai wangi 2,5 ml/l + insektisida sintetik (Fention 500 EC 1 ml/l) dapat mengendalikan *D. piperis* di lapang dengan nilai efikasi lebih dari 50%. Dosis anjuran Fention 500 EC adalah 2 ml/l. Dengan menggunakan teknologi ini, dosis insektisida sintetik dapat berkurang sampai dengan 50%.

Keunggulannya:

- Pestisida nabati ramah lingkungan.
- Minyak serai wangi dan cengkeh kompatibel, apabila dikombinasikan dengan parasitoid telur *A. dasyni*, sehingga pengendalian *D. piperis* dapat bekerja lebih efektif dan efisien dan dapat mengurangi penggunaan pestisida kimia hingga 50%. Di sekitar pertanaman lada di lapang, dapat ditanam vegetasi berbunga (antara lain *A. gangetica*), sebagai sumber nektar/pakan sehingga dapat menunjang kehidupan parasitoid.

17. Teknologi Graffting Pala In Situ

Masalah utama dalam budidaya tanaman pala adalah kepastian pohon jantan dan betina belum terjamin dari awal pembibitan/penanaman. Bila tanaman pala sudah besar maka salah satu teknik untuk membuat cabang jantan menjadi betina adalah dengan teknik grafting *in situ*. Teknik grafting ini dapat dilakukan untuk membentuk cabang jantan atau betini. Keberhasilan grafting pada tanaman pala betina sedikit lebih tinggi dibandingkan dengan tanaman jantan, namun demikian perbedaan tingkat keberhasilannya tidak berbeda secara nyata. Demikian pula tingkat keberhasilan penyambungan di cabang primer di area dekat batang utama/pokok juga tidak berbeda nyata denga perlakuan penyambungan di area dekat pucuk. Tingkat keberhasilan penyambungan entres baik pada pohon jantan maupun betina umur 2 bulan setelah sambung mencapai

18. Teknologi Deteksi dan Pengendalian Virus Nilam

Penyakit yang disebabkan oleh virus merupakan salah satu masalah dalam budidaya nilam. Untuk mengurangi penyebaran dan kejadian penyakit yang disebabkan oleh virus perlu dilakukan deteksi dini dan pengendalian penyakit. Deteksi pada tanaman nilam khususnya pada kebun induk dapat dilakukan dengan teknik *Tissue Blot Immune Assay* (TBIA) dan *dot immune binding assay* (DIBA). Untuk melindungi tanaman nilam dari infeksi virus mosaik dan vektornya dapat menggunakan formula minyak serai wangi dan minyak cengkeh dengan konsentrasi 0,7%.

Keunggulannya :

- Deteksi dini bisa diaplikasikan oleh petani nilam karena mudah dilakukan dan tidak memerlukan alat-alat yang canggih
- Penggunaan pestisida nabati dapat mengurangi penggunaan pestisida kimia (ramah lingkungan).

19. Teknologi Penyimpanan Benih Jahe

Ketersediaan benih pada saat yang tepat untuk penanaman sering menjadi kendala dalam budidaya dan pengembangan jahe. Selain itu juga berkembang jamur pada benih yang terbawa dari lapang, sehingga diperlukan teknologi penyimpanan yang tepat. Penyimpanan dengan kondisi lingkungan yang baik untuk benih rimpang jahe Jahe Putih Besar selama empat bulan yaitu pada kondisi ruang gelap ber AC (18 – 22°C). Perlakuan benih dengan paclobutrazol 3000 ppm dapat menghambat terjadinya pertunasan selama penyimpanan, tapi
tidak dapat menghambat terjadinya penyusutan bobot rimpang dan menekan pertumbuhan/perkembangan jamur kontaminan benih.

Keunggulan: teknologi produksi benih JPB dengan invigorasi dan teknologi penyimpanan benih JPB yang dapat mempertahankan mutu benih tetap tinggi

20. Teknologi Pengendalian Terpadu Hama Penyakit Pada Jahe

OPT utama jahe yaitu patogen busuk rimpang : *Rastonia solanacearum, Fusarium sp.* dan nematoda *Meloidogyne* sp. Melalui integrasi sistem tumpangsari (jagung, cabe/bawang daun), perlakuan tanah (mulsa plastik, bubur bordo 2%) dan perlakuan benih (pestisida) pada rimpang dapat menekan beberapa patogen utama sekaligus sehingga menekan kerusakan rimpang (busuk rimpang dan infeksi nematoda) dan kehilangan hasil.

Keunggulan: pengendalian dengan beberapa komponen pengendalian dan tumpangsari selain dapat menekan serangan penyakit juga dapat meningkatkan tambahan pendapatan dari komoditas yang ditumpangsarikan.

21. Teknologi pembuatan VCO dari kopra putih dengan metode kering

Unit proses terdiri dari unit pengeringan sistem oven dengan suhu terkendali agar diperoleh kopra putih. Unit penggilingan (penghancuran kopra putih) dan unit pengepresan (pemisahan minyak dan ampas dari hancuran kelapa) menggunakan peralatan spesifik yakni komponen bahan yang kontak langsung dengan bahan yang diolah menggunakan stainless steel, untuk meminimalkan terjadinya proses oksidasi terhadap bahan olah. Kapasitas olah sekitar 20 kg hancuran kopra putih / jam.

Minyak yang dihasilkan dikelompokkan menjadi dua kelompok, yakni: *Kelompok 1* (berpeluang sebagai VCO) ; kadar air 0,05-0,07 %, kadar FFA 0,05-0,08 %, bilangan peroksida 0,11-0,14 mg ek/kg, dan warna minyak jernih. *Kelompok 2* (minyak goreng); kadar air > 0,07 %, kadar FFA 0,10-0,12 %, bilangan
peroksida 0,15-0,17 mg ek/kg, dan warna minyak kuning muda. Standar mutu VCO, menurut APPC (2005) yakni kadar air 0,1-0,3 %, FFA kurang dari 0,5 %, bilangan peroksida kurang dari 3, berwarna jernih seperti air, bebas dari bau asing dan tidak rasa tengik.

Keunggulan teknologi:
- Tidak menggunakan air proses.
- Kepraktisan dalam proses pengolahan produk minyak/VCO, hemat tenaga kerja dan energi.
- Limbah (ampas kelapa) sudah matang siap digunakan sebagai pakan ternak.

Kegunaan:
- Perbaikan mutu kopra dan peningkatan nilai tambah komoditas kelapa dan pendapatan petani, melalui kelompok tani/gabungan kelompok tani.
- Pemberdayaan kelompok tani/gabungan kelompok tani pada pengolahan produk minyak kelapa/VCO sistem mekanis yang efisien.

Gambar 49. Alat pengepres minyak kopra putih
22. Teknologi Perbanyakan Serangga Polinatar *Elaedobius kamerunicus* Pada Kelapa Sawit

23. Pemanfaatan Mikroorganisme Antagonis Pengendali Phytophthora Palmivora Penyebab Penyakit Busuk Pucuk Kelapa (BPK) Dan Gugur Buah Kelapa (GBK) Pada Tanaman Kelapa

Keunggulan teknologi ini karena ramah lingkungan dan mengurangi limbah debu sabut. Dan kegunaannya untuk mengendalikan patogen *Phytophthora palmivora* sehingga dapat menekan kehilangan hasil karena serangan penyakit Busuk Pucuk Kelapa (BPK) dan Gugur Buah Kelapa (GBK) pada tanaman kelapa.

Pencapaian *indikator kesembilan* yaitu inovasi teknologi peternakan dan veteriner yang telah dihasilkan oleh kegiatan litbang peternakan tahun 2015 yaitu sebanyak 47 teknologi yang terdiri dari 5 teknologi pemuliaan, 6 teknologi reproduksi, 7 teknologi pakan, 3 teknologi hijauan pakan ternak; 4 teknologi
budidaya ternak, 7 teknologi diagnosta penyakit hewan, 3 teknologi vaksin dan obat hewan, 6 teknologi veteriner, 3 teknologi untuk pengendalian gangguan reproduksi dan metabolisme pada hewan dan 3 teknologi informasi epidemiologi. Jumlah teknologi yang dihasilkan tahun 2015, memiliki nilai capaian yang melebihi target yang telah ditentukan. Hal ini disebabkan adanya output tambahan dari Balai Penelitian Ternak, dari 10 teknologi yang ditargetkan, diperoleh 15 teknologi yang terdiri dari 5 teknologi pemuliaan, 2 teknologi reproduksi, 2 teknologi pakan, 2 teknologi hijauan pakan ternak dan 4 teknologi budidaya ternak. Meskipun nilai capaian untuk indikator kinerja jumlah teknologi peternakan dan veteriner yang dihasilkan UPT lingkup Puslitbang Upa melebihi target yang telah ditentukan, sampai dengan akhir tahun anggaran masih ada dua teknologi yang masih dalam proses penyelesaian yaitu Deteksi Cepat Residu Pestisida Pentachlorophenol (PCP) pada Pakan dan Produk Ternak dalam Rangka Menjamin Keamanan Pangan (teknologi diagnosa penyakit) dan Pengembangan Teknik Diagnosa Imunosensor untuk Penyakit Metabolik (defisiensi mineral esensial) pada Sapi (teknologi untuk pengendalian gangguan reproduksi dan metabolisme pada hewan).

Indikator 3:

Jumlah Model Sistem Kelembagaan dan Inovasi Spesifik Lokasi

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Model Agrobiindustri Terpadu</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>2. Model Pengembangan Pertanian Terpadu Barbasis Agroekologi/tipologi Lahan</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>3. Model Pengembangan Inovasi Teknologi Pertanian Bioindustri</td>
<td>66</td>
<td>66</td>
<td>100</td>
</tr>
<tr>
<td>4. Tersedianya Model Pengembangan Kawasan Agribisnis Hortikultura</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>5. Tersedianya Model Bioindustri Perkebunan</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>6. Tersedianya model pembangunan pertanian bioindustri berbasis tanaman pangan di lahan suboptimal</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>76</td>
<td>100</td>
</tr>
</tbody>
</table>
Berdasarkan indikator kinerja ketiga yang telah ditargetkan pada Tahun 2015, dari 6 indikator kinerja keseluruhannya mencapai target 100%.

Secara lengkap rincian 2 (dua) model yang dihasilkan pada indikator kinerja sasaran “Model Agrobioindustri Terpadu” adalah sebagai berikut:

Gambar 50. Aktivitas produksi di “rumah jagung” dan produk yang dihasilkan (berasen dan tepung jagung)
2) Model Pertanian Bioindustri Sagu. Model bioindustri sagu merupakan pembangunan kawasan di Kabupaten Sorong Selatan, Papua Barat dengan memanfaatkan sumber bahan baku lokal sagu dan limbah hasil olahan yang diproses menghasilkan produk pangan dan energi yang mempunyai nilai tambah, ramah lingkungan, dan zero waste untuk kesejahteraan masyarakat setempat. Semua produk yang dikembangkan (antar lain pati, mi dan papeda, gula cair dan briket) bersifat marketable sehingga sagu mampu berkontribusi dalam meningkatkan pendapatan masyarakat lokal.

Gambar 51. Aktivitas produksi di ”mini plan sagu” dan ”rumah sagu” sebagai media promosi dan outlet pemasaran

Pencapaian **Indikator ketiga** yaitu Model Pengembangan Inovasi Teknologi Pertanian Bioindustri pada Tahun 2015 telah tercapai sebesar 100 persen, atau terealisasi 66 model dari target 66 model sehingga dapat dikatakan berhasil. Adapun rincian output yang telah dicapai dari kegiatan ini diuraikan sebagai berikut:

Rekapitulasi Model Pengembangan Inovasi Teknologi Pertanian Bioindustri

<table>
<thead>
<tr>
<th>No</th>
<th>Komoditas</th>
<th>Jumlah Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Berbasis Tanaman Pangan</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Berbasis Tanaman Hortikultura</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Berbasis Tanaman Perkebunan</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Berbasis Peternakan</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Berbasis Agroekosistem</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Berbasis Sistem Usahatani</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Model Pengembangan Inovasi Teknologi Pertanian Bioindustri Spesifik lokasi</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>66</td>
</tr>
</tbody>
</table>

Indikator 4:

Jumlah Agro Science Park (ASP)

Agro Science Park (ASP) merupakan indikator kerja baru yaitu sebuah program pemerintah yang bertujuan untuk mempercepat aliran teknologi di bidang pertanian sampai ke lapangan dan diimplementasikan oleh pengguna khususnya petani. ASP sendiri merupakan sebuah kawasan percontohan sekaligus penyedia teknologi pertanian yang ke depan diharapkan dapat memicu dan memacu petani dalam hal peningkatan produktivitas hasil pertanian, maupun manajemen usaha pertaniannya.

Target ASP pada tahun 2015 telah terealisasi sebesar 100% dimana ASP tersebut terdapat di 6 propinsi yaitu : Lampung, Jateng, Sulteng, Kalsel, Sulsel dan Bogor (Cimanggu). Agro Science Park dikembangkan di lokasi UPT

Badan Penelitian dan Pengembangan Pertanian

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah Pembangunan Agro Science Park</td>
<td>6</td>
<td>6</td>
<td>100</td>
</tr>
</tbody>
</table>

Indikator 5:

Jumlah Agro Techno Park (ATP)

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah Pembangunan Agro Techno Park</td>
<td>16</td>
<td>16</td>
<td>100</td>
</tr>
</tbody>
</table>

Laporan Kinerja Instansi Pemerintah Tahun 2015

Indikator 6:
Jumlah Rekomendasi Kebijakan Pembangunan Pertanian

Pencapaian Indikator keenam dari target 102 rekomendasi kebijakan terealisasi sebesar 131 rekomendasi kebijakan (128,4%).

Rincian target dan terealisasi dari rekomendasi kebijakan sebagai berikut:

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rekomendasi Kebijakan Pengembangan Dan Pemanfaatan Bioteknologi Dan SDG</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>2. Rekomendasi Kebijakan Pengembangan Pascapanen Pertanian</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>3. Kebijakan Pemanfaatan Dan Pengelolaan Sumber Daya Lahan, Air, Dan Lingkungan Serta Perubahan Iklim, Telah Dihasilkan 16 Rekomendasi/Policy Brief</td>
<td>5</td>
<td>16</td>
<td>320</td>
</tr>
<tr>
<td>4. Jumlah Rekomendasi Kebijakan</td>
<td>42</td>
<td>47</td>
<td>111,9</td>
</tr>
<tr>
<td>5. Rekomendasi Kebijakan Nasional Mekanisasi Pertanian Di Indonesia Mektan</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>6. Rekomendasi Kebijakan Pertanian Untuk Pembangunan Pertanian</td>
<td>22</td>
<td>33</td>
<td>150</td>
</tr>
<tr>
<td>7. Rekomendasi Kebijakan Pengembangan Tanaman Pangan</td>
<td>9</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>8. Rekomendasi Kebijakan Litbang Hortikultura</td>
<td>3</td>
<td>11</td>
<td>366,67</td>
</tr>
<tr>
<td>9. Rekomendasi Kebijakan Litbang Perkebunan</td>
<td>6</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>10. Rekomendasi Kebijakan Pembangunan Peternakan Dan Veteriner</td>
<td>7</td>
<td>8</td>
<td>114,29</td>
</tr>
<tr>
<td>TOTAL</td>
<td>102</td>
<td>131</td>
<td>128,4</td>
</tr>
</tbody>
</table>

Berdasarkan indikator kinerja keenam yang telah ditargetkan pada Tahun 2015, dari 10 indikator kinerja, 5 indikator mencapai target 100% sedangkan 5 indikator lainnya melebihi target yaitu 320%, 111,9%, 150%, 366,67%, 114,29% (sangat berhasil).

Pencapaian **indikator pertama** yaitu kinerja “Rekomendasi Kebijakan pembangunan dan Pemanfaatan Bioteknologi dan SDG pada tahun 2015 sebesar 100% dari target tahun 2015 yaitu 2 rekomendasi dengan rincian “Kebijakan Bioteknologi dan Sumber Daya Genetik Pertanian” dan “Kebijakan Pengembangan Biologi dan Bioteknologi”

Realisasi capaian **indikator kedua** yaitu kinerja “Rekomendasi kebijakan pengembangan pascapanen pertanian” pada tahun 2015 sebesar 100% dari target tahun 2015 yaitu 4 rekomendasi. Rincian **output** 4 (empat) rekomendasi kebijakan yang dihasilkan pada indikator kinerja sasaran “Rekomendasi Kebijakan Pengembangan Pascapanen Pertanian” adalah sebagai berikut:

1) Rekomendasi penyediaan dan pemanfaatan pangan lokal berkelanjutan untuk memperbaiki status gizi masyarakat dan ketahanan pangan;
2) Rekomendasi kebijakan pengendalian mikotoksin (aflaktoksin) pada pala;
3) Rekomendasi kebijakan pengendalian kontaminan logam berat pada kakao;
4) Rekomendasi pemanfaatan padi varietas unggul berdasarkan karakteristik fisikokimianya.

Target pencapaian **indikator ketiga** sebanyak 5 Rekomendasi Kebijakan Pemanfaatan dan pengelolaan Sumber Daya Lahan, Air, dan Lingkungan serta Perubahan Iklim. Pada tahun 2015 ini telah dihasilkan 16 Rekomendasi/Policy Brief, dengan demikian capaiannya 320%. Secara lengkap judul-judul Rekomendasi/Policy Brief yang dihasilkan adalah sebagai berikut:

1) Strategi Pencegahan Dan Penanggulangan Kebakaran Lahan Gambut.
2) Strategi Pengelolaan Tanah Pertanian Dalam Rangka Adaptasi Perubahan Iklim.
3) Kebijakan Pengembangan Lahan 9 Juta Hektar.
4) Model Percepatan Pembangunan Pertanian Berbasis Inovasi di Lahan Bekas Tambang (M-P3LBTT) di Provinsi Bangka Belitung.
5) Arah dan Strategi Pemetaan Sumberdaya Lahan Pertanian Tingkat Detail di Indonesia.
6) Arahan Pengelolaan Lahan Vulkan dengan Pendekatan Sifat Kandungan Mineralogi Tanah.

8) Alokasi Ruang Budidaya Kelapa Sawit di Kawasan Perbatasan Indonesia – Malaysia di Indonesia

9) Strategi dan Kebijakan Pengendalian Lahan Terdegradasi

10) Percepatan Penyediaan Informasi Geospasial Sumberdaya Lahan Skala Operasional (> 1:50.000) Mendukung Pengembangan Pertanian

11) Strategi Pengelolaan Lahan Sawah Terintrusi Air Laut Menghadapi Dampak Perubahan Iklim

12) Strategi Peningkatan Adopsi Teknologi Konservasi Tanah pada Kawasan Sayuran Dataran Tinggi

13) Permentan No. 03/Permentan/OT.140/2/2015 pada Lahan Rawa Pasang Surut

14) Strategi Peningkatan Produksi Jagung di Lahan Rawa

15) Strategi Penggunaan Pupuk Majemuk NPK dalam Mendorong Pemupukan Berimbang

16) Potensi Sumberdaya Lahan Untuk Tanaman Kedelai: Arah dan Prioritas Pengembangan

Pencapaian **indikator keempat** yaitu rekomendasi kebijakan pembangunan pertanian wilayah telah tercapai sebesar 111,9 persen, atau terealisasi 47 rekomendasi dari target 42 rekomendasi, sehingga masuk dalam kategori **sangat berhasil**. Rekomendasi kebijakan yang dihasilkan antara lain:

1) Rekomendasi penataan lahan pasang surut di Kabupaten Barito Kuala Kalimantan Selatan antara lain (1) Lahan rawa pasang surut berpotensi menjadi sumber produksi pertanian sehingga pemerintah dapat memanfaatkan potensi tersebut dengan melakukan reklamasi lahan, dan (2) Faktor kunci keberhasilan pengelolaan lahan rawa pasang surut adalah pengelolaan lahan dan air secara baik dan benar.

2) Rekomendasi kebijakan penggunaan pestida secara bijak dan ramah lingkungan. Berdasarkan hasil survey didapatkan masih tingginya residu
pestisida pada hasil pertanian terutama tanaman sayuran dan buah-buahan di sentra produksi Kabupaten Karo.

3) Peran penerapan teknologi Jajar Legowo. Teknologi tanam jajar legowo merupakan salah satu terobosan yang dikembangkan Badan Litbang Pertanian untuk mendorong peningkatan produksi tanaman pangan, utamanya padi. Kebijakan yang mendukung perlunya tanam jajar legowo ini implisit dalam Keputusan Direktorat Jenderal Tanaman Pangan bulan Januari 2012, tentang Pedoman Teknis SL-PTT Padi 2012. Secara umum jarak tanam yang dipakai adalah 20 X 20 cm dan bisa dimodifikasi menjadi 22,5 X 22,55 cm atau 25 X 25 cm sesuai pertimbangan varietas padi yang akan ditanam atau tingkat kesuburan tanahnya. Jarak tanam untuk padi yang sejenis dengan varietas IR-64 seperti varietas ciherang cukup dengan jarak tanam 20 X 20 cm sedangkan untuk varietas padi yang memiliki penampilan lebat dan tinggi perlu diberi jarak tanam yang lebih lebar misalnya 22,5 sampai 25 cm. Demikian juga pada tanah yang kurang subur cukup digunakan jarak tanam 20 X 20 cm sedangkan pada tanah yang lebih subur perlu diberi jarak yang lebih lebar misal 22,5 cm atau pada tanah yang sangat subur jarak tanamnya bisa 25 X 25 cm. Pemilihan ukuran jarak tanam ini bertujuan agar mendapatkan hasil yang optimal. Sebagai tambahan bahwa penerapan sistem tanam jajar legowo akan memberikan hasil maksimal dengan memperhatikan arah barisan tanaman dan arah datangnya sinar matahari. Lajur barisan tanaman dibuat menghadap arah matahari terbit agar seluruh barisan tanaman pinggir dapat memperoleh intensitas sinar matahari yang optimum dengan demikian tidak ada barisan tanaman terutama tanaman pinggir yang terhalangi oleh tanaman lain dalam mendapatkan sinar matahari. Faktor penghambat penerapan inovasi ini antara lain: keterbatasan SDM, kurang cocok diterapkan di luasan sempit, ketersediaan caplak yang kurang memadai,

4) Kebijakan penyaluran bantuan alsintan. Kondisi sosial ekonomi masyarakat di pedesaan yang berbeda-beda serta mahalnya harga alsintan, menimbulkan beragamnya proses kepemilikan alsintan oleh petani baik secara pribadi maupun kelompok. Hasil identifikasi menunjukkan bahwa secara umum alsintan yang diberikan kepada petani sesuai dengan kebutuhan mereka, untuk transplanter. Alsin tersebut secara umum sesuai
dengan kondisi lahan dan usahatani kecuali untuk transplanter, combine harvester dan dryer.

Indikator keenam telah dihasilkan 33 rekomendasi kebijakan pertanian untuk pembangunan pertanian” dari 22 rekomendasi kebijakan yang ditargetkan, yang menyangkut aspek sosial ekonomi dan kebijakan pertanian. Kinerja Pusat Sosial Ekonomi dan Kebijakan Pertanian secara umum menunjukkan hasil pencapaian keberhasilan yang cukup baik dan sesuai, bahkan beberapa sasaran melebihi target sasaran yang telah ditetapkan pada tahun 2015. Uraian secara lebih lengkap tentang capaian kinerja masing-masing sasaran tersebut selanjutnya diuraikan sebagai berikut:

<table>
<thead>
<tr>
<th>No.</th>
<th>Sasaran</th>
<th>Indikator Kinerja</th>
<th>Uraian</th>
<th>Target</th>
<th>Capaian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Terwujudnya sistem pengetahuan, data dan informasi serta analisis yang berkaitan dengan:</td>
<td></td>
<td>Jumlah rekomendasi kebijakan terkait pengelolaan sumberdaya pertanian</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>a) pengelolaan sumber daya pertanian, penguatan usaha pertanianbioindustri, ketahanan pangan, dan pengentasan kemiskinan</td>
<td>Jumlah rekomendasi kebijakan terkait penguatan usaha pertanian dan pembangunan infrastruktur pertanian</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Kebijakan ekonomi makro dan perdagangan</td>
<td>Jumlah rekomendasi kebijakan terkait penguatan daya saing dan perlindungan usaha pertanian-bioindustri</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah rekomendasi kebijakan terkait makro ekonomi yang mendorong</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Indikator Kinerja Ketujuh

Yaitu tersedianya rekomendasi kebijakan pengembangan tanaman pangan. Untuk mencapai sasaran tersebut, diukur melalui pencapaian indikator kinerja utama dengan target yang ditetapkan dalam PK 2015 yaitu tersedianya 9 rekomendasi kebijakan tanaman pangan. Sasaran tersebut telah dicapai sebesar 100 % yaitu dirakitnya 9 rekomendasi kebijakan tanaman pangan.

Laporan Kinerja Instansi Pemerintah Tahun 2015

No.	**Sasaran**	**Indikator Kinerja**	**Uraian**	**Target**	**Capaian**
2. | Terciptanya beberapa model kelembagaan penerapan teknologi dan agribisnis | Jumlah recomndasi kebijakan terkait pengembangan kelembagaan dan peraturan mendorong iklim usaha yang kondusif | 4 | 4
3. | Terwujudnya proyeksi permintaan dan penawaran komoditas pertanian utama dan indikator pembangunan pertanian dan pedesaan, 2015 - 2019 | Jumlah recomndasi kebijakan terkait ketahanan pangan, pengentasan kemiskinan dan pembangunan pedesaan | 2 | 2
| | | Jumlah recomndasi kebijakan terkait dinamika ekonomi pertanian dan perdesaan | 1 | 1
4. | Terciptanya beberapa paket alternatif rekomendasi kebijakan dan program pertanian dan pedesaan | Jumlah recomndasi kebijakan terkait dengan isu-isu kebijakan aktual | 10 | 21

Jumlah Rekomendasi 22 33
shallot seed) yang digunakan dapat membantu untuk memenuhi kebutuhan benih bawang merah dengan produktivitas dan kualitas umbi yang dapat dipasarkan secara mudah dan massal, sehingga dapat mendorong terwujudnya swasembada benih dan bawang merah sebagai substitusi benih dan umbi konsumsi bawang merah impor.

Realisasi capaian indikator kesembilan yaitu rekomendasi kebijakan litbang perkebunan pada tahun 2015 sebesar 100% dari target 6 rekomendasi yaitu Studi dampak teknologi unggulan, Percepatan Adopsi Sistem Tanam Juring Ganda Tebu, Akselerasi Swasembada Gula, Pengembangan Bioindustri Berbasis Perkebunan, Up Date Neraca Gula, Dukungan Fasilitasi bagi Percepatan Adopsi Sistem Juring Ganda.

Capaian indikator kesepuluh yaitu jumlah rekomendasi kebijakan pembangunan peternakan dan veteriner dengan nilai capaian target sebesar 114,29%. Rekomendasi kebijakan yang telah dihasilkan 6 rekomendasi kebijakan pembangunan peternakan dan 2 rekomendasi kebijakan pembangunan veteriner. Rekomendasi kebijakan pembangunan peternakan tersebut yaitu 4 rekomendasi dalam bentuk booklet: (1) “Dukungan kebijakan dalam mengakselerasi pengembangan integrasi sawit-sapi”; (2) “Pengembangan sapi perah di luar Jawa mendukung peningkatan produksi dan konsumsi susu segar”; (3) “Menyikapi kerjasama industri pengolahan ayam berbahan baku impor”; (4) “Kebijakan pendukungan dalam meningkatkan produksi dan konsumsi daging kambing domba”; serta 2 policy brief : (1) “Estimasi kebutuhan sapi betina produktif” dan (2) “Menyikapi pengembangan sapi wagyu di Indonesia”. Selain itu dihasilkan pula 2 rekomendasi kebijakan pembangunan veteriner berupa saran kebijakan berdasarkan kajian terkait program pengendalian dan penanggulangan rabies di Indonesia menuju Indonesia bebas Rabies 2020 khususnya terkait pelaksanaan program vaksinasi massal rabies serta saran kebijakan terkait arah pembangunan industri obat hewan nasional.
Indikator 7:
Tersedianya Benih Sumber Tanaman mendukung Sistem Perbenihan

Pencapaian indikator ketujuh adalah sebesar 61,17 % (cukup berhasil) dengan rincian sebagai berikut:

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tersedianya Benih Sumber Varietas Unggul Baru Padi, serealia serta kacang dan Ubi (Ton)</td>
<td>231,8</td>
<td>254,85</td>
<td>109,49</td>
</tr>
<tr>
<td>2. Tersedianya sejumlah produksi Benih Sumber (Ton)</td>
<td>3.255</td>
<td>1.877,34</td>
<td>58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.486,8</td>
<td>2.132,2</td>
<td>61,17</td>
</tr>
</tbody>
</table>

Sasaran **Indikator kedua** yaitu tersedianya sejumlah produksi benih sumber yang merupakan mandat BBP2TP yang telah ditargetkan dalam Tahun 2015 telah tercapai sebesar 58 %, atau terealisasi 1877,34 ton dari target 3255 ton, sehingga masuk dalam kategori cukup berhasil. Indikator kinerja 'jumlah produksi benih' capaiannya rendah terlihat dari hasil kegiatan Unit Produksi Benih Sumber Kedelai hanya tercapai sebesar 1877,34. Tidak tercapainya target ini disebabkan antara lain oleh tingginya serangan hama dan penyakit, terjadi kekeringan panjang di sebagian wilayah sehingga mengakibatkan terjadinya...
gagal panen. Sedangkan di wilayah lain terjadi banjir di awal masa tanam sehingga lahan lama terendam banjir.

Indikator 8 :

Jumlah bibit sumber ternak

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah bibit ternak (Ekor)</td>
<td>12.375</td>
<td>14.547</td>
<td>117,55</td>
</tr>
</tbody>
</table>

Indikator 9:
Jumlah teknologi yang diseminasikan

Indikator kinerja sasaran yang telah di targetkan dalam Tahun 2015 telah tercapai 163,60 % atau realisasi 334 teknologi yang diseminasikan dari target 276 teknologi, sehingga masuk dalam kategori sangat berhasil.

<table>
<thead>
<tr>
<th>Indikator Kinerja</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah teknologi yang didiseminasikan ke pengguna</td>
<td>276</td>
<td>334</td>
<td>163,60</td>
</tr>
</tbody>
</table>

Rincian dari jumlah teknologi yang didiseminasikan ke pengguna adalah sebagai berikut:

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Teknologi yang didiseminasikan</th>
<th>Jumlah Teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teknologi Tanaman Pangan</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>Teknologi Hortikultura</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Teknologi Tanaman Perkebunan</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Teknologi peternakan</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Teknologi Pascapanan dan Pengolahan Hasil</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Teknologi Sumber Daya Genetik</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>AEZ</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Sumberdaya lahan</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Budidaya tanaman</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Teknologi Perbenihan/Pembibitan</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Teknologi Pemupukan</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Teknologi Pengendalian Hama Terpadu</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>Teknologi Mekanisasi Spesifik Lokasi</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Teknologi KATAM</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Teknologi Tepat Guna</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Teknologi Rumah Pangan Lestari</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Bioindustri</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>Diseminasi teknologi</td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>Kelembagaan</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>334</td>
</tr>
</tbody>
</table>

Capaian kinerja indikator jumlah teknologi yang didiseminasikan ke pengguna pada tahun 2015 sebesar 163,60 % dan masuk dalam kategori sangat berhasil. Capaian kinerja tahun 2015 merupakan yang tertinggi dibandingkan tahun-tahun sebelumnya yang realisasinya sekitar 163,60 %. Namun demikian tahun 2010
capaiannya kurang dari 100 persen yaitu 73,8%. Berdasarkan uraian tersebut dapat disimpulkan bahwa indikator kinerja teknologi yang didiseminasikan sejak periode renstra 2010-2014 telah mencapai target kategori berhasil dan tahun 2015 mencapai kategori sangat berhasil. Sejumlah teknologi tersebut diantaranya telah digunakan secara luas dan terbukti menjadi pendorong utama perkembangan usaha dan sistem agribisnis berbagai komoditas pertanian. BPTP memiliki mandat untuk melakukan pendampingan teknologi PTT Padi, Jagung, Kedelai, Tanaman Hortikultura, Peternakan, Perkebunan, serta program strategis Kementan lainnya.

3.3. Akuntabilitas Keuangan (Audited)

Untuk membiayai kegiatan penelitian dan pengembangan pertanian pada tahun 2015, Badan Litbang Pertanian mendapat alokasi anggaran sebesar Rp.1.876.649.124,00, yang terdiri dari belanja pegawai Rp.535.062.494,00, belanja barang Rp.991.672.395,00, dan belanja modal sebesar Rp.349.914.235.000.

Gambar 52. Grafik Persentase Pagu Anggaran

Memperhatikan komposisi penyediaan anggaran diatas memperlihatkan belanja barang menempati penyediaan pagu yang paling tinggi. Hal tersebut dapat digunakan sebagai indikator bahwa operasional pelaksanaan kegiatan di Badan Litbang Pertanian, lebih membutuhkan belanja barang, termasuk untuk pendanaan kegiatan penelitian dan pengembangan pertanian. Sedangkan
belanja modal dibutuhkan untuk melengkapi kegiatan penelitian maupun operasional berupa peralatan dan atau bangunan.

Gambar 53. Perbandingan (Persentase) Realisasi Terhadap Pagu Anggaran Badan Litbang Pertanian TA 2015 Per Belanja
Sedangkan anggaran dan realisai belanja per kegiatan sampai dengan 31 Desember 2015 sebagai berikut :

Gambar 54. Perbandingan (Persentase) Realisasi Terhadap Pagu Anggaran Badan Litbang Pertanian TA 2015 Per Eselon 2

Dari gambar realiasasi anggaran per kegiatan di atas, dapat dilihat bahwa Dukungan Manajemen Fasilitas dan Instrumen Teknis dalam Pelaksanaan Kegiatan mempunyai realisasi 93,37%.

Belanja Pegawai

Realisasi belanja pegawai 31 Desember 2015 adalah senilai Rp 520.493.064.361,00 atau sebesar 97.28% dari Pagu Anggaran setelah dikurangi pengembalian senilai Rp654.829.786,00. Anggaran dan realisasi belanja pegawai berdasarkan sub kelompok belanja sampai dengan 31 Desember 2015 adalah sebagai berikut :

Belanja Barang

Realisasi belanja barang sampai dengan 31 Desember 2015 adalah senilai Rp.951.743.850.879 atau sebesar 95.97% dari Pagu Anggaran setelah dikurangi pengembalian senilai Rp.690.590.270. Anggaran dan realisasi belanja barang berdasarkan sub kelompok belanja sampai dengan 31 Desember 2015 sebagai berikut:

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Anggaran (Rp)</th>
<th>Realisasi (Rp)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belanja Barang Operasional</td>
<td>54.480.117.000</td>
<td>52.834.776.007</td>
<td>96.98</td>
</tr>
<tr>
<td>Belanja Barang Non Operasional</td>
<td>198.300.235.000</td>
<td>187.025.389.360</td>
<td>94.31</td>
</tr>
<tr>
<td>Belanja Barang Persediaan</td>
<td>198.233.385.000</td>
<td>193.584.319.666</td>
<td>97.65</td>
</tr>
<tr>
<td>Belanja Jasa</td>
<td>150.103.841.000</td>
<td>140.861.086.441</td>
<td>93.84</td>
</tr>
<tr>
<td>Belanja Pemeliharaan</td>
<td>58.447.530.000</td>
<td>57.071.642.076</td>
<td>97.65</td>
</tr>
<tr>
<td>Belanja Perjalanan DN</td>
<td>223.855.566.000</td>
<td>217.224.406.605</td>
<td>97.04</td>
</tr>
<tr>
<td>Belanja Perjalanan LN</td>
<td>9.230.901.000</td>
<td>7.620.654.004</td>
<td>82.56</td>
</tr>
<tr>
<td>Belanja Barang untuk Diserahkan ke Masyarakat</td>
<td>98.007.100.000</td>
<td>95.256.207.990</td>
<td>97.17</td>
</tr>
<tr>
<td>Belanja Barang Lainnya untuk Diserahkan ke Masyarakat</td>
<td>1.013.720.000</td>
<td>955.959.000</td>
<td>94.30</td>
</tr>
<tr>
<td>Jumlah Bruto</td>
<td>991.672.395.000</td>
<td>952.343.441.149</td>
<td>96.04</td>
</tr>
<tr>
<td>Pengembalian</td>
<td>-</td>
<td>690.590.270</td>
<td>-</td>
</tr>
<tr>
<td>Jumlah Netto</td>
<td>991.672.395.000</td>
<td>951.743.850.879</td>
<td>95.97</td>
</tr>
</tbody>
</table>
Belanja Modal

Realisasi belanja modal sampai dengan 31 Desember 2015 adalah senilai Rp.334.439.501.038 atau sebesar 95,58% dari Pagu Anggaran setelah dikurangi pengembalian senilai Rp.82.989.000. Anggaran dan realisasi belanja modal berdasarkan sub kelompok belanja sampai dengan 31 Desember 2015 adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Anggaran (Rp)</th>
<th>Realisasi (Rp)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belanja Modal Tanah</td>
<td>1.232.600.000</td>
<td>1.143.818.000</td>
<td>92.80</td>
</tr>
<tr>
<td>Belanja Modal Peralatan dan Mesin</td>
<td>163.016.428.000</td>
<td>156.215.038.027</td>
<td>95.83</td>
</tr>
<tr>
<td>Belanja Modal Gedung dan Bangunan</td>
<td>158.963.490.000</td>
<td>151.532.360.807</td>
<td>95.33</td>
</tr>
<tr>
<td>Belanja Modal, Jalan, Irigasi dan Jaringan</td>
<td>22.259.868.000</td>
<td>21.499.785.114</td>
<td>96.59</td>
</tr>
<tr>
<td>Belanja Modal Lainnya</td>
<td>4.441.849.000</td>
<td>4.131.488.090</td>
<td>93.01</td>
</tr>
<tr>
<td>Jumlah Bruto</td>
<td>349.914.235.000</td>
<td>334.522.490.038</td>
<td>95.60</td>
</tr>
<tr>
<td>Pengembalian</td>
<td>-</td>
<td>82.989.000</td>
<td>-</td>
</tr>
<tr>
<td>Jumlah Netto</td>
<td>349.914.235.000</td>
<td>334.439.501.038</td>
<td>95.58</td>
</tr>
</tbody>
</table>

Pengelolaan PNBP

Sebagian besar satker realisasinya sudah melebihi 100% dari target yang bersumber dari:

1. Setoran pendapatan dari hasil pertanian.
2. Pendapatan sewa tanah, gedung dan bangunan.
3. Pendapatan Hak dan Perijinan
4. Pendapatan Jasa Tenaga, Pekerjaan, Informasi, Pelatihan dan Teknologi
5. Pendapatan Jasa Lainnya
7. Setoran pengembalian belanja tahun anggaran yang lalu.
Satker-satker berikut melakukan Revisi Target dan Pagu PNBP dan disetujui oleh Kementerian Keuangan karena realisasi penerimaan fungsionalnya melebihi 100% dari target diantaranya:

<table>
<thead>
<tr>
<th>No</th>
<th>Satker</th>
<th>Target APBN</th>
<th>Target APBNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sekretariat Badan Litbang</td>
<td>90.000.000</td>
<td>175.810.000</td>
</tr>
<tr>
<td>2</td>
<td>Balitkabi</td>
<td>357.249.788</td>
<td>931.158.538</td>
</tr>
<tr>
<td>3</td>
<td>Lolittungro</td>
<td>44.044.800</td>
<td>72.585.000</td>
</tr>
<tr>
<td>4</td>
<td>Balitnak</td>
<td>352.570.000</td>
<td>662.497.000</td>
</tr>
<tr>
<td>5</td>
<td>Lolitsapo</td>
<td>181.638.000</td>
<td>913.365.400</td>
</tr>
<tr>
<td>6</td>
<td>Balitsa</td>
<td>213.000.000</td>
<td>432.059.750</td>
</tr>
<tr>
<td>7</td>
<td>Balitbu Tropika</td>
<td>303.045.000</td>
<td>371.216.000</td>
</tr>
<tr>
<td>8</td>
<td>Balittanah</td>
<td>1.942.250.000</td>
<td>2.843.737.000</td>
</tr>
<tr>
<td>9</td>
<td>Balitro</td>
<td>498.300.000</td>
<td>561.572.600</td>
</tr>
<tr>
<td>10</td>
<td>BPTP DIY</td>
<td>44.496.000</td>
<td>413.902.000</td>
</tr>
<tr>
<td>11</td>
<td>BPTP Jabm</td>
<td>152.669.000</td>
<td>427.627.000</td>
</tr>
<tr>
<td>12</td>
<td>BPTP Kalteng</td>
<td>38.682.036</td>
<td>194.142.000</td>
</tr>
<tr>
<td>13</td>
<td>BPTP Sumbar</td>
<td>330.840.000</td>
<td>401.767.700</td>
</tr>
<tr>
<td>14</td>
<td>BPTP Sultra</td>
<td>75.153.600</td>
<td>106.824.960</td>
</tr>
<tr>
<td>15</td>
<td>Balai PATP</td>
<td>440.600.000</td>
<td>729.356.000</td>
</tr>
</tbody>
</table>

Namun demikian hingga akhir TA 2015 terdapat satker yang realisasinya masih dibawah target atau tidak mencapai 100%, sebagaimana tercantum dalam tabel dibawah ini:

<table>
<thead>
<tr>
<th>No</th>
<th>Satker</th>
<th>Target</th>
<th>Realisasi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pustaka</td>
<td>81.660.540</td>
<td>29.581.493</td>
<td>36,22</td>
</tr>
<tr>
<td>2</td>
<td>Puslitbangnak</td>
<td>20.850.000</td>
<td>4.663.568</td>
<td>22,36</td>
</tr>
<tr>
<td>3</td>
<td>BB Pascapanen</td>
<td>1.005.400.000</td>
<td>922.485.207</td>
<td>91,75</td>
</tr>
<tr>
<td>4</td>
<td>Balitklimat</td>
<td>46.900.000</td>
<td>34.033.147</td>
<td>72,56</td>
</tr>
<tr>
<td>5</td>
<td>LPTP Kep. Riau</td>
<td>3.250.000</td>
<td>925.000</td>
<td>28,46</td>
</tr>
<tr>
<td>6</td>
<td>BPTP Papua Barat</td>
<td>52.500.000</td>
<td>43.078.000</td>
<td>82,05</td>
</tr>
<tr>
<td>7</td>
<td>LPTP Sulawesi Barat</td>
<td>6.000.000</td>
<td>2.065.010</td>
<td>34,41</td>
</tr>
</tbody>
</table>
BAB IV. PENUTUP

Capaian sasaran Badan Litbang Pertanian tahun 2015 diukur dengan 9 (sembilan) indikator kinerja. Indikator kinerja sasaran yang telah ditargetkan dalam tahun 2015 sebagian besar telah tercapai dan melebihi target yang ditetapkan, dengan kriteria capaian berhasil (100%) dan sangat berhasil (di atas 100%). Keberhasilan pencapaian sasaran secara umum didukung oleh sumberdaya yang ada, terutama SDM peneliti, litkayasa dan tenaga administrasi yang memadai.

Namun demikian, masih terdapat kendala-kendala yang dihadapi dalam pencapaian sasaran. Kendala teknis maupun non teknis seperti kendala musim, pencairan dana dan proses pengadaan yang terlambat masih dialami pada pelaksanaan kegiatan di beberapa UK/UPT lingkup Badan Litbang Pertanian.

Upaya perbaikan tetap dilakukan oleh seluruh jajaran Badan Litbang Pertanian dalam rangka tercapainya sasaran kegiatan, dengan meningkatkan koordinasi dengan pihak-pihak terkait, mengoptimalkan sumberdaya yang ada dan memperbaiki fungsi manajemen, terutama pada tahap perencanaa
Lampiran 1. Struktur Organisasi Badan Penelitian Dan Pengembangan Pertanian

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tersedianya varietas dan gula ruk ungul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioengineering.</td>
<td>Jumlah varietas dan gula ruk ungul baru</td>
<td>Varietas/VUB/Genetik</td>
<td>79</td>
<td>85</td>
<td>88</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Tersedianya teknologi dan inovasi budidaya, pasca panen, dan prototipe algoritma berbasis biocience dan bioengineering dengan memanfaatkan advanced technology, seperti teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang</td>
<td>Jumlah teknologi pengelolaan lahan, air, agroklimat, dan sumberdaya genetik</td>
<td>Teknologi</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi budidaya</td>
<td></td>
<td>94</td>
<td>94</td>
<td>98</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi spesifik lokasi</td>
<td>Teknologi</td>
<td>66</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah prototipe algoritma</td>
<td>Teknologi</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi pasca panen dan pengolahan</td>
<td>Teknologi</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Tersedianya data dan informasi sumberdaya pertanian (lahan, air, ilmu dan sumberdaya genetik) berbasis bio-informatika dan geospasial dengan dukungan IT</td>
<td>Jumlah peta topik sumberdaya lahan dan sumberdaya genetik</td>
<td>Peta</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>4.</td>
<td>Tersedianya model pengembangan inovasi pertanian, komponen, dan rekomendasi kebijakan pembangunan pertanian</td>
<td>Jumlah model pengembangan inovasi pertanian bio-industri spesifik lokasi</td>
<td>Model</td>
<td>77</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>Rekomendasi</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>5.</td>
<td>Tersedia dan terdistribusinya produk inovasi pertanian (benih/bibit sumber tanaman termak, dan materi transfer teknologi)</td>
<td>Jumlah benih/bibit sumber tanaman termak</td>
<td>Ton/ekor</td>
<td>13,467</td>
<td>15,700</td>
<td>16,030</td>
<td>16,365</td>
<td>16,755</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi yang diseminasi ke pengguna</td>
<td>Teknologi</td>
<td>96</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>Pengukuran dan perluasan jaringan kerja mendukung terwujudnya lembaga litbang pertanian yang handal dan terkemuka</td>
<td>Jumlah kerja sama</td>
<td>Kontrak</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah HKI</td>
<td>Inversi</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah artikel yang dipublikasikan</td>
<td>Judul</td>
<td>189</td>
<td>191</td>
<td>193</td>
<td>195</td>
<td>197</td>
</tr>
</tbody>
</table>
Lampiran 3. Rencana Kinerja Tahunan Balitbangtan 2015

<table>
<thead>
<tr>
<th>No</th>
<th>Sasaran Strategis</th>
<th>Indikator Kinerja</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tersedianya varietas dan galur/klon unggul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioscience</td>
<td>1 Jumlah varietas dan galur/klon unggul baru tanaman dan ternak</td>
<td>79 Varietas/VUB/Galur</td>
</tr>
<tr>
<td>2</td>
<td>Tersedianya teknologi dan inovasi budidaya, pasca panen, dan prototipe alsintan berbasis bioscience dan bioengineering dengan memanfaatkan advanced technology, seperti teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang adaptif</td>
<td>1 Jumlah teknologi pengelolaan lahan, air, agroklimat, dan sumberdaya genetik</td>
<td>27 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah teknologi budidaya</td>
<td>82 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Jumlah teknologi spesifik lokasi</td>
<td>66 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Jumlah prototipe alsintan</td>
<td>7 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Jumlah teknologi pasca panen dan pengolahan</td>
<td>13 Teknologi</td>
</tr>
<tr>
<td>3</td>
<td>Tersedianya data dan informasi sumberdaya pertanian (lahan, air, iklim dan sumberdaya genetik) berbasis bio-informatika dan geo-spatial dengan dukungan IT</td>
<td>1 Jumlah peta tematik sumberdaya lahan dan sumberdaya genetik</td>
<td>60 Peta</td>
</tr>
<tr>
<td>4</td>
<td>Tersedianya model pengembangan inovasi pertanian, kelembagaan, dan rekomendasi kebijakan pembangunan pertanian</td>
<td>1 Jumlah model pengembangan inovasi pertanian bio-industri</td>
<td>76 Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>90 Rekomendasi</td>
</tr>
<tr>
<td>5</td>
<td>Tersedia dan terdistribusinya produk inovasi pertanian (benih/bibit sumber, prototipe, peta) dan materi transfer teknologi</td>
<td>1 Jumlah benih/bibit sumber tanaman/ternak</td>
<td>13.467 Ton/Ekor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah teknologi yang diseminasikan ke pengguna</td>
<td>96 Teknologi</td>
</tr>
<tr>
<td>6</td>
<td>Penguatan dan perluasan jejaring kerja mendukung terwujudnya lembaga litbang pertanian yang handal dan terkemuka</td>
<td>1 Jumlah kerja sama</td>
<td>150 Kontrak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah HKI</td>
<td>45 Invensi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Jumlah artikel yang dipublikasikan</td>
<td>189 Judul</td>
</tr>
</tbody>
</table>

Badan Penelitian dan Pengembangan Pertanian
Lampiran 4. Perjanjian Kinerja Balitbangtan 2015

PERJANJIAN KINERJA TAHUN 2015

Dalam rangka mewujudkan manajemen pemerintahan yang efektif, transparan, dan akuntabel serta berorientasi pada hasil, kami yang bertanda tangan di bawah ini:

Nama : Haryono
Jabatan : Kepala Badan Penelitian dan Pengembangan Pertanian

selanjutnya disebut Pihak Pertama

Nama : A. Amran Sulaiman
Jabatan : Menteri Pertanian

selaku atasan langsung Pihak Pertama, selanjutnya disebut Pihak Kedua

Pihak Pertama berjanji akan mewujudkan target kinerja yang seharusnya sesuai lampiran perjanjian ini, dalam rangka mencapai target kinerja jangka menengah seperti yang telah ditetapkan dalam dokumen perencanaan. Keberhasilan dan kegagalan pencapaian target kinerja tersebut menjadi tanggung jawab Pihak Pertama.
Pihak Kedua akan memberikan supervisi yang diperlukan serta akan melakukan evaluasi terhadap capaian kinerja dari perjanjian ini dan mengambil tindakan yang diperlukan dalam rangka pemberian penghargaan dan sanksi.

Jakarta, Maret 2015

Pihak Kedua,

A. Amran Sulaiman

Pihak Pertama,

Haryono
<table>
<thead>
<tr>
<th>NO</th>
<th>SASARAN PROGRAM</th>
<th>INDIKATOR</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penciptaan Teknologi dan Inovasi Pertanian Bio-industri Berkelanjutan</td>
<td>1. Jumlah Varietas (Galur /klon) Unggul Baru</td>
<td>89 Varietas (Galur)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi dan inovasi peningkatan produksi pertanian</td>
<td>223 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah model sistem kelembagaan dan inovasi spesifik lokasi</td>
<td>76 Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Jumlah Agro Science Park (ASP)</td>
<td>6 Provinsi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah Agro Techno Park (ATP)</td>
<td>16 Kabupaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>102 Rekomendasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Jumlah benih sumber tanaman</td>
<td>3.487 Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Jumlah bibit sumber ternak</td>
<td>12.375 Ekor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Jumlah teknologi yang didiseminasikan ke pengguna</td>
<td>276 Teknologi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>Anggaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kegiatan Litbang Tanaman Pangan</td>
<td>Rp. 165.837.896.000,-</td>
</tr>
<tr>
<td>2. Kegiatan Litbang Tanaman Hortikultura</td>
<td>Rp. 103.730.073.000,-</td>
</tr>
<tr>
<td>4. Kegiatan Litbang Peternakan</td>
<td>Rp. 115.336.833.000,-</td>
</tr>
<tr>
<td>5. Kegiatan Litbang Sumberdaya Lahan Pertanian</td>
<td>Rp. 147.348.056.000,-</td>
</tr>
<tr>
<td>6. Kegiatan Litbang Bioteknologi dan Sumberdaya Genetik Pertanian</td>
<td>Rp. 40.432.930.000,-</td>
</tr>
<tr>
<td>No.</td>
<td>Kegiatan</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>Kegiatan Penelitian/Analisis Sosial Ekonomi dan Kebijakan Pertanian</td>
</tr>
<tr>
<td>8.</td>
<td>Kegiatan Perekayasaan/Litbang Mekanisasi Pertanian</td>
</tr>
<tr>
<td>9.</td>
<td>Kegiatan Litbang Pascapanen Pertanian</td>
</tr>
<tr>
<td>10.</td>
<td>Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi Pertanian</td>
</tr>
<tr>
<td>11.</td>
<td>Kegiatan Pengkajian dan Percepatan Diseminasi Inovasi Pertanian</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Jakarta, Maret 2015

Menteri Pertanian,

[Signature]

Aman Sulaiman

Kepala Badan Penelitian dan Pengembangan Pertanian,

[Signature]

Haryono
Lampiran 5. Revisi Perjanjian Kinerja Balitbangtan 2015

PERJANJIAN KINERJA TAHUN 2015

Dalam rangka mewujudkan manajemen pemerintahan yang efektif, transparan, dan akuntabel serta berorientasi pada hasil, kami yang bertanda tangan di bawah ini:

Nama : Muhammad Syakir
Jabatan : Kepala Badan Penelitian dan Pengembangan Pertanian
 selanjutnya disebut Pihak Pertama

Nama : A. Amran Sulaiman
Jabatan : Menteri Pertanian
 selaku atasan langsung Pihak Pertama, selanjutnya disebut Pihak Kedua

Pihak Pertama berjanji akan mewujudkan target kinerja yang seharusnya sesuai lampiran perjanjian ini, dalam rangka mencapai target kinerja jangka menengah seperti yang telah ditetapkan dalam dokumen perencanaan. Keberhasilan dan kegagalan pencapaian target kinerja tersebut menjadi tanggung jawab Pihak Pertama.

Pihak Kedua akan memberikan supervisi yang diperlukan serta akan melakukan evaluasi terhadap capaian kinerja dari perjanjian ini dan mengambil tindakan yang diperlukan dalam rangka pemberian penghargaan dan sanksi.

Jakarta, Juni 2015

Pihak Kedua,
A. Amran Sulaiman

Pihak Pertama,
Muhammad Syakir
PERJANJIAN KINERJA TAHUN 2015
BADAN PENELITIAN DAN PENGEMBANGAN PERTANIAN

<table>
<thead>
<tr>
<th>NO</th>
<th>SASARAN PROGRAM</th>
<th>INDIKATOR</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Penciptaan Teknologi dan Inovasi Pertanian Bio-industri Berkelanjutan</td>
<td>1. Jumlah Varietas (Galur /klon) Unggul Baru</td>
<td>89 Varietas (Galur)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi dan inovasi peningkatan produksi pertanian</td>
<td>223 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah model sistem kelembagaan dan inovasi spesifik lokasi</td>
<td>76 Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Jumlah Agro Science Park (ASP)</td>
<td>6 Provinsi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah Agro Techno Park (ATP)</td>
<td>16 Kabupaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>102 Rekomendasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Jumlah benih sumber tanaman</td>
<td>3.487 Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Jumlah bibit sumber ternak</td>
<td>12.375 Ekor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Jumlah teknologi yang diseminasikan ke pengguna</td>
<td>276 Teknologi</td>
</tr>
</tbody>
</table>

Kegiatan

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>Anggaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kegiatan Litbang Tanaman Pangan</td>
<td>Rp. 165.837.896.000,-</td>
</tr>
<tr>
<td>2. Kegiatan Litbang Tanaman Hortikultura</td>
<td>Rp. 103.730.073.000,-</td>
</tr>
<tr>
<td>4. Kegiatan Litbang Peternakan</td>
<td>Rp. 115.336.833.000,-</td>
</tr>
<tr>
<td>5. Kegiatan Litbang Sumberdaya Lahan Pertanian</td>
<td>Rp. 147.348.056.000,-</td>
</tr>
<tr>
<td>6. Kegiatan Litbang Bioteknologi dan Sumberdaya Genetik Pertanian</td>
<td>Rp. 40.432.930.000,-</td>
</tr>
<tr>
<td>No.</td>
<td>Kegiatan</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>Kegiatan Penelitian/Analisis Sosial Ekonomi dan Kebijakan Pertanian</td>
</tr>
<tr>
<td>8.</td>
<td>Kegiatan Perekayasaan/Litbang Mekanisasi Pertanian</td>
</tr>
<tr>
<td>9.</td>
<td>Kegiatan Litbang Pascapanen Pertanian</td>
</tr>
<tr>
<td>10.</td>
<td>Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi Pertanian</td>
</tr>
<tr>
<td>11.</td>
<td>Kegiatan Pengkajian dan Percepatan Diseminasi Inovasi Pertanian</td>
</tr>
<tr>
<td>12.</td>
<td>Kegiatan Dukungan Manajemen, Fasilitasi Instrumen Teknis dalam Pelaksanaan Kegiatan Litbang Pertanian</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Jakarta, Juni 2015

Menteri Pertanian,

[Signature]

IA. Anwar Sulaiman

Kepala Badan Penelitian dan Pengembangan Pertanian,

[Signature]

Muhammad Syakir
Lampiran 1. Struktur Organisasi Badan Penelitian Dan Pengembangan Pertanian

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tersedianya varietas dan galur/kon unggul baru, adaptif dan berdaya saing dengan manfaatkan advanced technology dan bioenjiniring</td>
<td>Jumlah varietas dan galur/kon unggul baru</td>
<td>Varietas/VUB/Gar</td>
<td>79</td>
<td>85</td>
<td>88</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Tersedianya teknologi dan inovasi budidaya, pasca panen, dan prototipe alsintan berbasis bioscience dan bioenjiniring dengan manfaatkan advanced technology, seperti teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang komersial</td>
<td>Jumlah teknologi pengelolaan lahan, air, agroklimat, dan sumberdaya genetik</td>
<td>Teknologi</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi budidaya</td>
<td>Teknologi</td>
<td>94</td>
<td>94</td>
<td>98</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi spesifik lokasi</td>
<td>Teknologi</td>
<td>66</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah prototipe alsintan</td>
<td>Teknologi</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi pasca panen dan pengolahan</td>
<td>Teknologi</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Tersedianya data dan informasi sumberdaya pertanian (lahan, air, ilmiah dan sumberdaya genetik) berbasis bio-informatika dan geospasial dengan dukungan IT</td>
<td>Jumlah peta tematik sumberdaya lahan dan sumberdaya genetik</td>
<td>Peta</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Tersedianya model pengembangan inovasi pertanian, kolaborasi, dan rekomendasi kebijakan pembangunan pertanian</td>
<td>Jumlah model pengembangan inovasi pertanian bio-industri spesifik lokasi</td>
<td>Model</td>
<td>77</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Model pembangunan pertanian</td>
<td>Model</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>Tersedia dan terdistribusinya produk inovasi pertanian (bunyi/bibit sumber tanaman/termak, dan materi transfer teknologi)</td>
<td>Jumlah benih/bibit sumber tanaman/termak</td>
<td>Ton/Ekor</td>
<td>13,467</td>
<td>15,700</td>
<td>16,030</td>
<td>16,365</td>
<td>16,755</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah teknologi yang diseminasi ke pengguna</td>
<td>Teknologi</td>
<td>96</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Penguatan dan perluasan jejaring kerja mendukung terwujudnya lembaga litbang pertanian yang handal dan terkemuka</td>
<td>Jumlah kerja sama</td>
<td>Kontrak</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah HKJ</td>
<td>Inversi</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jumlah artikel yang dipublikasikan</td>
<td>Judul</td>
<td>189</td>
<td>191</td>
<td>193</td>
<td>195</td>
<td>197</td>
</tr>
<tr>
<td>No</td>
<td>Sasaran Strategis</td>
<td>Indikator Kinerja</td>
<td>Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Tersedianya varietas dan galur/klon unggul baru, adaptif dan berdaya saing dengan memanfaatkan advanced technology dan bioscience</td>
<td>1 Jumlah varietas dan galur/klon unggul baru tanaman dan ternak</td>
<td>79 Varietas/VUB/Galur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tersedianya teknologi dan inovasi budidaya, pasca panen, dan prototipe alsintan berbasis bioscience dan bioengineering dengan memanfaatkan advanced technology, seperti teknologi nano, bioteknologi, iradiasi, bioinformatika dan bioprosesing yang adaptif</td>
<td>1 Jumlah teknologi pengelolaan lahan, air, agroklimat, dan sumberdaya genetik</td>
<td>27 Teknologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah teknologi budidaya</td>
<td>82 Teknologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Jumlah teknologi spesifik lokasi</td>
<td>66 Teknologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Jumlah prototipe alsintan</td>
<td>7 Teknologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Jumlah teknologi pasca panen dan pengolahan</td>
<td>13 Teknologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tersedianya data dan informasi sumberdaya pertanian (lahan, air, iklim dan sumberdaya genetik) berbasis bio-informatika dan geo-spatial dengan dukungan IT</td>
<td>1 Jumlah peta tematik sumberdaya lahan dan sumberdaya genetik</td>
<td>60 Peta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tersedianya model pengembangan inovasi pertanian, kelembagaan, dan rekomendasi kebijakan pembangunan pertanian</td>
<td>1 Jumlah model pengembangan inovasi pertanian bio-industri</td>
<td>76 Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>90 Rekomendasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tersedia dan terdistribusinya produk inovasi pertanian (benih/bibit sumber, prototipe, peta) dan materi transfer teknologi</td>
<td>1 Jumlah benih/bibit sumber tanaman/ternak</td>
<td>13.467 Ton/Ekor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah teknologi yang diseminasikan ke pengguna</td>
<td>96 Teknologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Penguatan dan perluasan jejaring kerja mendukung terwujudnya lembaga litbang pertanian yang handal dan terkemuka</td>
<td>1 Jumlah kerja sama</td>
<td>150 Kontrak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jumlah HKI</td>
<td>45 Invensi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Jumlah artikel yang dipublikasikan</td>
<td>189 Judul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 4. Perjanjian Kinerja Balitbangtan 2015

PERJANJIAN KINERJA TAHUN 2015

Dalam rangka mewujudkan manajemen pemerintahan yang efektif, transparan, dan akuntabel serta berorientasi pada hasil, kami yang bertanda tangan di bawah ini:

Nama : Haryono
Jabatan : Kepala Badan Penelitian dan Pengembangan Pertanian

selanjutnya disebut Pihak Pertama

Nama : A. Amran Sulaiman
Jabatan : Menteri Pertanian

selaku atasan langsung Pihak Pertama, selanjutnya disebut Pihak Kedua

Pihak Pertama berjanji akan mewujudkan target kinerja yang seharusnya sesuai lampiran perjanjian ini, dalam rangka mencapai target kinerja jangka menengah seperti yang telah ditetapkan dalam dokumen perencanaan. Keberhasilan dan kegagalan pencapaian target kinerja tersebut menjadi tanggung jawab Pihak Pertama.

Pihak Kedua akan memberikan supervisi yang diperlukan serta akan melakukan evaluasi terhadap capaian kinerja dari perjanjian ini dan mengambil tindakan yang diperlukan dalam rangka pemberian penghargaan dan sanksi.

Jakarta, Maret 2015

Pihak Pertama,

[Signature]
Haryono

Pihak Kedua,

[Signature]
A. Amran Sulaiman
PERJANJIAN KINERJA TAHUN 2015

BADAN PENELITIAN DAN PENGEMBANGAN PERTANIAN

<table>
<thead>
<tr>
<th>NO</th>
<th>SASARAN PROGRAM</th>
<th>INDIKATOR</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Penciptaan Teknologi dan Inovasi Pertanian Bio-industri Berkelanjutan</td>
<td>1. Jumlah Varietas (Galur /klon) Unggul Baru</td>
<td>89 Varietas (Galur)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi dan inovasi peningkatan produksi pertanian</td>
<td>223 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah model sistem kelembagaan dan inovasi spesifik lokasi</td>
<td>76 Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Jumlah Agro Science Park (ASP)</td>
<td>6 Provinsi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah Agro Techno Park (ATP)</td>
<td>16 Kabupaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>102 Rekomendasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Jumlah benih sumber tanaman</td>
<td>3.487 Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Jumlah bibit sumber ternak</td>
<td>12.375 Ekor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Jumlah teknologi yang didiseminasikan ke pengguna</td>
<td>276 Teknologi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>Anggaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kegiatan Litbang Tanaman Pangan</td>
<td>Rp. 165.837.896.000,-</td>
</tr>
<tr>
<td>2. Kegiatan Litbang Tanaman Hortikultura</td>
<td>Rp. 103.730.073.000,-</td>
</tr>
<tr>
<td>4. Kegiatan Litbang Peternakan</td>
<td>Rp. 115.336.833.000,-</td>
</tr>
<tr>
<td>5. Kegiatan Litbang Sumberdaya Lahan Pertanian</td>
<td>Rp. 147.348.056.000,-</td>
</tr>
<tr>
<td>6. Kegiatan Litbang Bioteknologi dan Sumberdaya Genetik Pertanian</td>
<td>Rp. 40.432.930.000,-</td>
</tr>
</tbody>
</table>
7. Kegiatan Penelitian/Analisis Sosial Ekonomi dan Kebijakan Pertanian Rp. 33.450.678.000,-
8. Kegiatan Perekayasaan/Litbang Mekanisasi Pertanian Rp. 34.031.896.000,-
9. Kegiatan Litbang Pascapanen Pertanian Rp. 32.568.907.000,-
10. Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi Pertanian Rp. 32.343.283.000,-
11. Kegiatan Pengkajian dan Percepatan Diseminasi Inovasi Pertanian Rp. 746.781.760.000,-

Total Rp. 1.990.046.908.000,-

Jakarta, Maret 2015

Menteri Pertanian,

[Signature]

Kepala Badan Penelitian dan Pengembangan Pertanian,

[Signature]
Lampiran 5. Revisi Perjanjian Kinerja Balitbangtan 2015

Perjanjian Kinerja Tahun 2015

Dalam rangka mewujudkan manajemen pemerintahan yang efektif, transparan, dan akuntabel serta berorientasi pada hasil, kami yang bertanda tangan di bawah ini:

Nama : Muhammad Syakir
Jabatan : Kepala Badan Penelitian dan Pengembangan Pertanian

selanjutnya disebut Pihak Pertama

Nama : A. Amran Sulaiman
Jabatan : Menteri Pertanian

selaku atasan langsung Pihak Pertama, selanjutnya disebut Pihak Kedua

Pihak Pertama berjanji akan mewujudkan target kinerja yang seharusnya sesuai lampiran perjanjian ini, dalam rangka mencapai target kinerja jangka menengah seperti yang telah ditetapkan dalam dokumen perencanaan. Keberhasilan dan kegagalan pencapaian target kinerja tersebut menjadi tanggung jawab Pihak Pertama.

Pihak Kedua akan memberikan supervisi yang diperlukan serta akan melakukan evaluasi terhadap capaian kinerja dari perjanjian ini dan mengambil tindakan yang diperlukan dalam rangka pemberian penghargaan dan sanksi.

Jakarta, Juni 2015

[Signature]

A. Amran Sulaiman

[Signature]

Muhammad Syakir
PERJANJIAN KINERJA TAHUN 2015

BADAN PENELITIAN DAN PENGEMBANGAN PERTANIAN

<table>
<thead>
<tr>
<th>NO</th>
<th>SASARAN PROGRAM</th>
<th>INDIKATOR</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Penciptaan Teknologi dan Inovasi Pertanian Bio-industri Berkelanjutan</td>
<td>1. Jumlah Varietas (Galur/klon) Unggul Baru</td>
<td>89 Varietas (Galur)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Jumlah teknologi dan inovasi peningkatan produksi pertanian</td>
<td>223 Teknologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Jumlah model sistem kelembagaan dan inovasi spesifik lokasi</td>
<td>76 Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Jumlah Agro Science Park (ASP)</td>
<td>6 Provinsi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Jumlah Agro Techno Park (ATP)</td>
<td>16 Kabupaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Jumlah rekomendasi kebijakan pembangunan pertanian</td>
<td>102 Rekomendasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Jumlah benih sumber tanaman</td>
<td>3.487 Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Jumlah bibit sumber ternak</td>
<td>12.375 Ekor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Jumlah teknologi yang didiseminasiakan ke pengguna</td>
<td>276 Teknologi</td>
</tr>
</tbody>
</table>

Kegiatan

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>Anggaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kegiatan Litbang Tanaman Pangan</td>
<td>Rp. 165.837.896.000,-</td>
</tr>
<tr>
<td>2. Kegiatan Litbang Tanaman Hortikultura</td>
<td>Rp. 103.730.073.000,-</td>
</tr>
<tr>
<td>4. Kegiatan Litbang Peternakan</td>
<td>Rp. 115.336.833.000,-</td>
</tr>
<tr>
<td>5. Kegiatan Litbang Sumberdaya Lahan Pertanian</td>
<td>Rp. 147.348.056.000,-</td>
</tr>
<tr>
<td>6. Kegiatan Litbang Bioteknologi dan Sumberdaya Genetik Pertanian</td>
<td>Rp. 40.432.930.000,-</td>
</tr>
</tbody>
</table>
7. Kegiatan Penelitian/Analisis Sosial Ekonomi dan Kebijakan Pertanian Rp. 33.450.678.000,-
8. Kegiatan Perekasanya/Litbang Mekanisasi Pertanian Rp. 34.031.896.000,-
9. Kegiatan Litbang Pascapanen Pertanian Rp. 32.568.907.000,-
10. Kegiatan Pengembangan Perpustakaan dan Penyebaran Teknologi Pertanian Rp. 32.343.283.000,-
11. Kegiatan Pengkajian dan Percepatan Diseminasi Inovasi Pertanian Rp. 746.781.760.000,-

Total

Rp. 1.990.046.908.000,-

Jakarta, Juni 2015

Menteri Pertanian,

[Signature]

IA. Ahmad Sulaiman

Kepala Badan Penelitian dan Pengembangan Pertanian,

[Signature]

Muhammad Syakir